Universidade Positivo Sistemas de Informação 11/02/2019 - 12:35:20.6 Estruturas de Dados e Arquivos Prof Dr P $Kantek\ (pkantek@up.edu.br)$ VIVO611a V: Grafos usando listas encadeadas 3.14 Exercício: 1 _ / ___

Grafos Definição formal: um grafo G é uma tripla G=(V,A,F), onde V= conjunto de vértices do grafo; A= conjunto de arestas do grafo e F = função que relaciona arestas e vértices $(F:A\Longrightarrow V\times V)$. O desenho de um gráfico é apenas um instrumento auxiliar (embora muito poderoso) para visualizar as conexões.

Seja o exemplo

 $G_1=(\{A,B,C,D\},\{1,2,3,4,5,6\},\{1\rightarrow A\times B,2\rightarrow B\times C,3\rightarrow B\times D,4\rightarrow B\times A,5\rightarrow C\times D,6\rightarrow D\times A\})$ G_1 seria representado como visto na figura representada no quadro.

Representações alternativas para o mesmo grafo:

 $G_1 = (\{A, B, C, D\}, \{1, 2, 3, 4, 5, 6\},$ $\begin{array}{lll} (1 & (A,B),2 & (B,C),3 & = (B,D),4 & = \\ (B,A),5 & = (C,D),6 & = (D,A)\}) \\ \text{ou} \ G_1 & = (\{A,B,C,D\},\{1,2,3,4,5,6\},\\ (B,B),(B,B)$ $\{(1, A, B), (2, B, C), (3, B, D), (4, B, A), (5, C, D), \}$ (6, D, A)

Observação: existe um excelente visualizador de grafos, freeware, denominado DOTGRAPH. Pode ser baixado em www.graphviz.org.

Alguns conceitos A seguir uma descrição dos principais conceitos associados a grafos. Ressalte-se que não existe uma terminologia universal para o tema, sendo a lista a seguir uma compilação das principais notações utilizadas pelos diversos autores.

Define-se ordem do grafo G, ao cardinal —V que nada mais é que o número de vértices do grafo.

Uma aresta pode ser definida por um par de vértices, que são conhecidos como extremidades da aresta e são conhecidos como vértices adjacentes

Um grafo é dito dirigido (ou digrafo) se suas arestas possuem orientação e nesse caso a aresta receberá o nome de arco. Visualmente falando, a orientação é representada por uma seta no destino da aresta.

Se o grafo não for dirigido ele é dito não dirigido (!). Nesse caso, a representação da aresta ligando os nodos a e b poderá ser representada como (a,b) ou (b,a) indistintamente.

Define-se origem, antecessor ou raiz de um arco ao primeiro vértice no par ordenado que define o

Define-se destino, sucessor ou extremidade de um arco ao segundo vértice no par ordenado que o define.

Diz-se que dois arcos ou arestas são paralelos, quando ambos tem mesma origem e mesmo destino.

Define-se um arco ou aresta laço quando os dois vértices do seu par são iguais.

Se o grafo não possui laços ou arestas paralelas ele é denominado simples. Se as possui, diz-se que o grafo é multigrafo.

Um grafo completo é aquele que é simples e no qual cada par de vértices distintos é adjacente.

Define-se grau de um vértice $v \in V$, o número de vértices adjacentes a V.

Um vértice que não possui aresta incidente (vértice grau 0) é dito isolado.

Um vértice que só possui uma única aresta in-

cidente (vértice de grau 1) é dito pendente. Dois vértices a e b são ditos adjacentes quando

a linha (a, b) existe no grafo. Uma seqüência de vértices adjacentes $v_1...v_k$ é dita caminho de v_1 até v_k . Esse caminho é formado por k-1 arestas. O valor k-1 é o comprimento

do caminho. Um ciclo é um caminho que tem início e final no mesmo vértice. Se este caminho for elementar, o ciclo é dito elementar.

Um grafo que não contenha ciclos simples é chamado acíclico.

Um caminho que contenha cada vértice do grafo uma vez, é chamado hamiltoniano.

Um caminho que contenha cada aresta do grafo uma vez, é chamado euleriano.

Uma árvore é um grafo que não tem ciclos e é conexo.

Grafos usando listas encadeadas de arestas

Observação: contagens começam em 1 e não

Existem basicamente duas maneiras de representar grafos. A primeira usa um conjunto de listas encadeadas. Serão tantas listas quantos vértices houverem no grafo. Acompanhe no quadro negro um exemplo desta representação. A outra maneira é através de uma matriz de adjacência. Trata-se de uma matriz $n \times n$, onde o elemento i,j dessa matriz representa a aresta que conecta os vértices i e i. Tipicamente usa-se o primeiro caso para grafos esparsos, nos quais a quantidade de zeros seria muito grande na matriz de adjacência.

De qualquer maneira são representações que se equivalem, ou seja, sempre é possivel passar de uma a outra.

Este exercício treinará a notação de listas encadeadas para representar grafos.

Definição: DIÂMETRO de um grafo é o maior caminho existente entre quaisquer par de vértices desse grafo.

Exemplo: Seja o grafo NÃO ORIENTADO, contendo 6 vértices e 7 arestas representado pelas tabelas a seguir, onde VÉRTICE é o número do vértice e PRIMEIRA ARESTA é o endereço da primeira aresta na tabela que representa as listas

te arestas	
VÉRTICE	1.ARESTA
1	8
2	16
3	13
4	2
5	9
6	15

	Lista de Arestas					
	VERT	VALOR	PROX			
1	2	10	-1			
2	1	13	5			
3	6	20	-1			
4	3	18	14			
5	5	20	-1			
6	5	18	-1			
7	6	10	-1			
8	4	13	18			
9	1	2	4			
10	13	19	10			
11	19	8	6			
12	15	8	1			
13	2	18	6			
14	4	20	-1			
15	1	20	1			
16	3	18	7			
17	6	12	20			
18	5	2	3			
19	3	14	12			
20	6	17	16			

Veja-se aqui como reconstituir o grafo deste exemplo:

O vértice 1 está ligado ao 4 por uma aresta valendo 13. O vértice 1 também está ligado ao 5 por uma aresta valendo 2 E também ao vértice 6 por uma aresta valendo 20.

Eis aqui, a título de esclarecimento, a matriz de adjacência do grafo

	1	2	3	4	5	6
1	0	0	0	13	2	20
$\frac{2}{3}$	0	0	18	0	0	10
3	0	18	0	0	18	0
$\frac{4}{5}$	13	0	0	0	20	0
5	2	0	18	20	0	0
6	20	10	0	0	0	0

Note que o grafo é não-orientado

Uma vez desenhado o grafo, deve-se obter a matriz de caminhos mínimos que neste caso é:

1116661	1Z GC	Cammi	1105 111	minios	que	HUSTU
	1	2	3	4	5	6
1	4	30	20	13	2	20
2	30	20	18	43	32	10
3	20	18	36	33	18	28
4	13	43	33	26	15	33
5	2	32	18	15	4	22
6	20	10	28	33	22	20

Agora, as duas perguntas do exercício:

- 1. Qual o diâmetro do grafo? (É o major valor na matriz de CM): Resposta: 43, que vem a ser a ligação de 2 com $\stackrel{\checkmark}{4}$ e 4 com 2
- 2. Quantas arestas "diminuiram de custo"? (Deve-se comparar a matriz CM com a matriz de adjacência originalmente construída) Resposta: 1.

note que a ligação 4 com 5 (e 5 com 4) tinha um custo de 20, mas na matriz de CM apareceu um caminho menor, valendo 15. É a única aresta onde isso ocorreu.

13 Para você fazer

Seja o seguinte grafo

VERT	TICES		LISTA DE	ARESTAS	
VERT	PRIM	NUM	VERT	VALOR	PROX
1-	18	1-	1	1	14
2-	1	2-	19	7	1
3-	10	3-	3	11	4
4-	16	4-	4	10	11
5-	3	5-	5	10	-1
6-	19	6-	2	17	11
		7-	4	9	-1
		8-	5	11	-1
		9-	8	6	4
		10-	1	8	8
		11-	6	14	-1
		12-	5	14	-1
		13-	4	3	7
		14-	6	4	-1
		15-	16	7	10
		16-	1	9	5
		17-	9	3	14
		18-	2	1	20
		19-	2	4	12
		20-	3	8	7

Perguntas: 1. Qual o diâmetro deste grafo?

2. Quantas arestas "diminuiram de custo"?

Note que APENAS as 14 (ou 7) arestas originais devem ser comparadas com os valores obtidos na matriz de caminhos mínimos.

