Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02 ARIEL GUSTAVO RODRIGUES DA S

75565 ARIEL GUSTAVO RODRIGUES DA S 24JOG501 - 1 ja vale para P2 de T3 ____ / ___ / ____ /

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o *Problema de Collatz*) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha hal

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: n --> n/2 (se n é par)

n --> 3n+1(se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

• Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Берою	que	mpremenear	11100010	Para	рготовьог
П					

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

766011

Responda aqui:	

501-75565 - le pa

Matemática aplicada Prof Dr P Kantek (pkantek@gmail.com)

VIVXha1a V: 1.02

CASSIANO MAGNO CHAGAS E SA 75572 24JOG501 - 2 ja vale para P2 de T3 ___/___/___

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 ->

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

_	 	1		1		
=						Ξ
ш						н
ш						н
ш						н
ш						н
ш						н
ш						н
ш						н
ΙI						н
ш						н
ш						н
ш						н
ш						н
ш						н
ш						н
ш						Ш
_						-

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

886834

Responda aqui:

501-75572 - le pa

CEP-UFPR-UTFPR-PUC/Pr-UP Sistemas de 30/09/2024 - 10:52:23.8 Matemática aplicada Prof I

Prof Dr P Kantek

VIVXha1a V: 1.02

75589 CHRISTOPHER BUCH FILIPAK 24JOG501 - 3 ja vale para P2 de T3 / /

Sequência de Collatz

(pkantek@gmail.com)

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o $Problema\ de\ Collatz$) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha hal

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: n --> n/2 (se n é par)

n --> 3n+1(se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

• Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

		 		1	
_	_				
- 1	l .				
_					

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

812964

Responda aqui:	

501-75589 - le pa

Prof Dr P Kantek

VIVXha1a V: 1.02

ERAN MARTINEZ RAMOS

 $24 \mathrm{JOG} 501$ - 4 ja vale para P2 de T3 ____/ ____/ ____

Sequência de Collatz

(pkantek@gmail.com)

75596

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 ->

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Dopois	que	TITPIC	, iii cii cai	11100010	Para	professor
П						

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

771562

Responda aqui:	

501-75596 - le pa

Prof Dr P Kantek

VIVXha1a V: 1.02

HENRIQUE IVANKIO GUSSE

 $24 \mathrm{JOG} 501$ - 5 ja vale para P2 de T3 ___/___/___

Sequência de Collatz

(pkantek@gmail.com)

75608

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

_				
П				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 11				
- 1				
_				
_	-			

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

935313

Responda aqui:					

501-75608 - le pa

Sistemas de Informação

Prof Dr P Kantek

VIVXha1a V: 1.02

IAN DOLABELLA OHATA $24 \mathrm{JOG} 501$ - 6 ja vale para P2 de T3 ____/ ____/ ____

Sequência de Collatz

(pkantek@gmail.com)

75615

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Берою	que	mpremenear	11100010	Para	рготовьог
П					

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

842890

Responda aqui:

501-75615 - le pa

Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

75622 $24 \mathrm{JOG} 501$ - 7 ja vale para P2 de T3

VIVXha1a V: 1.02 JOAO BONFIN LINO ____/ ____/ ____

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par) $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

741774

Responda aqui:						

501-75622 - le pa

Matemática aplicada Prof Dr P Kantek (pkantek@gmail.com)

VIVXha1a V: 1.02

JOAO LUCA FERNANDES DE OLIVE

24JOG501 - 8 ja vale para P2 de T3

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Bepois que impiementar mostre p	dia o professor

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

785940

Responda aqui:					

501-75639 - le pa

Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02

JOAO PEDRO DE BRITO DUARTE 75646 24JOG501 - 9 ja vale para P2 de T3 / /

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Depens.	940 -	riprominent	1110001	Para	Proroccor
11					
11					
11					
11					
i i					
11					
11					
11					

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

839496

	Responda aqui:						
Į							

501-75646 - le pa

CEP-UFPR-UTFPR-PUC/Pr-UP Sistemas de Informação 30/09/2024 - 10:52:23.8

Matemática aplicada Prof Dr P Kantek

(pkantek@gmail.com)

VIVXha1a V: 1.02

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o $Problema\ de\ Collatz$) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

rara testar rara o	ara testar i ara omar se o seu programa esta regar					
número original	comprimento da sequência de					
	Collatz					
13	10					
1100001	316					
100	26					
1000	112					
87654321	144					

A tela A tela esperada é algo assim:

Apoio à folha hal

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n -\!\!\!\!> n/2$ (se n é par)

n --> 3n+1(se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

• Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Depons	que	mpieme	JIIOGI	111000010	Para	proressor
11						
il .						i

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

703017

Responda aqui:						
	I					

501-75653 - le pa

Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02

JOAO VICTOR GOMES VILELA GER 75660 24JOG501 - 11 ja vale para P2 de T3 ____/ ____/ ___

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 ->

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

-					
- 1	1				
- 1	l .				
- 1	1				
- 1	l .				
- 1	1				
- 1	l .				
- 1	1				
- 1	l .				
- 1					
- 1	l .				
- 1	1				
- 1	l .				
- 1	1				
- 1					
- 1	1				
- 1	1				
- 1	l .				
- 1	1				
_					

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

893468

Responda aqui:

501-75660 - le pa

Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02 LUCAS ANTOSZCZYSZEN

75765 $24 \mathrm{JOG}501$ - 12ja vale para P2 de T3 ___/___/___

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

811318

Responda aqui:

501-75765 - le pa

Sistemas de Informação

Prof Dr P Kantek

VIVXha1a V: 1.02

LUIZ FELIPE GUEDES BUCCHERI 24JOG501 - 13 ja vale para P2 de T3 ___/___/___

Sequência de Collatz

(pkantek@gmail.com)

75677

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 ->

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Dopois	que	TITPIC	, iii cii cai	11100010	Para	professor
П						

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

857268

Responda aqui:

501-75677 - le pa

CEP-UFPR-UTFPR-PUC/Pr-UP Sistemas de In30/09/2024 - 10:52:23.8

Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02

75684 MANUELLA LEAL DE MEIRELLES F 24JOG501 - 14 ja vale para P2 de T3 ____ / ___ / ____

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o *Problema de Collatz*) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha hal

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: n --> n/2 (se n é par)

n --> 3n+1(se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

• Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

_		1		
=				
ш				
ш				
ш				
- 11				
ш				
ш				
ш				
- 11				
ш				
ш				
ш				
-11				
ш				
ш				
ш				
_				

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

896754

Responda aqui:	:	

501-75684 - le pa

30/09/2024 - 10:52:23.8 Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02

MARIA EDUARDA DA SILVA 75691 $24 \mathrm{JOG}501$ - 15ja vale para P2 de T3 ___/___/___

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

_	 		1	1	
_					
ш					
- 11					
- 11					
- 11					
- 11					
- 11					
- 11					
- 11					
ш					
- 11					
- 11					
- 11					
ш					
- 11					
Ш					
=					

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

780037

Responda aqui:	

501-75691 - le pa

Sistemas de Informação

30/09/2024 - 10:52:23.8 Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02

75703 MATHEUS AITA FABRICIO DE CAR 24JOG501 - 16 ja vale para P2 de T3 ____ / ____ / ____

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o *Problema de Collatz*) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

i ara omar se o seu programa esta tegar.			
comprimento da sequência de			
Collatz			
10			
316			
26			
112			
144			

A tela A tela esperada é algo assim:

Apoio à folha hal

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: n --> n/2 (se n é par)

n --> 3n+1(se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

• Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

874032

Responda aqui:	

501-75703 - le pa

30/09/2024 - 10:52:23.8 Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02

MATHEUS LEANDRO DE BITENCOUR 75710

24JOG501 - 17 ja vale para P2 de T3 ___/___/____

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

D op one	que impremiente	i mostro para o	Prorossor
П			
			I
			I
			I
			I
			I
11			
			I

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

896045

Responda aqui:	

501-75710 - le pa

Prof Dr P Kantek

VIVXha1a V: 1.02 MAYCON TAVARES WOLPE

75727 $24 \mathrm{JOG}501$ - 18 ja vale para P2 de T3

Sequência de Collatz

(pkantek@gmail.com)

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Dopois	que	TITPIC	, iii cii cai	11100010	Para	professor
П						

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

870307

Responda aqui:				

501-75727 - le pa

Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02 PEDRO TOLEDO LEAL

75734 $24 \mathrm{JOG}501$ - 19 ja vale para P2 de T3 ____/ ____/ ____

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Dopois	que	TITPIC	, iii cii cai	11100010	Para	professor
П						

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

784152

Responda aqui:				

501-75734 - le pa

30/09/2024 - 10:52:23.8 Matemática aplicada (pkantek@gmail.com)

Prof Dr P Kantek

VIVXha1a V: 1.02

PHELIPE GABRIEL LIMA DA SILV 75741 24JOG501 - 20 ja vale para P2 de T3 ___/___/___

Sequência de Collatz

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

780627

Responda aqui:	

501-75741 - le pa

Prof Dr P Kantek

VIVXha1a V: 1.02

REBECA CABRAL DOS SANTOS 24JOG501 - 21 ja vale para P2 de T3 ___/___/___

Sequência de Collatz

(pkantek@gmail.com)

75758

Baseado no problema Euler 14. (http:\\projecteuler.net). Como está lá:

A seguinte sequencia iterativa é definida para o conjunto dos números inteiros:

- $n \to n/2$ (se n é par)
- $n \to 3n + 1$ (se n é impar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência

$$13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

O seu programa deverá receber o número inicial da sequência e devolver a quantidade de termos que ela tem.

Para testar Para olhar se o seu programa esta legal:

número original	comprimento da sequência de
	Collatz
13	10
1100001	316
100	26
1000	112
87654321	144

Sistemas de Informação A tela A tela esperada é algo assim:

Apoio à folha ha1

Quantidade de termos na sequência de Collatz

A seguinte sequência iterativa é definida para o conjunto dos números inteiros: $n \rightarrow n/2$ (se n é par)

 $n \longrightarrow 3n+1$ (se n é ímpar)

Usando a regra acima e começando com 13 gera-se a seguinte sequência 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2

Pode-se ver que esta sequência começando em 13 e terminando em 1 tem 10 termos. Ainda que não tenha sido provado (ainda), (esta tese é conhecida como o Problema de Collatz) acha-se que não importa em que número comece ela sempre vai terminar em 1.

· Digite no campo abaixo o número inteiro

calcular

A quantidade de termos na sequência de Collatz é:

Para testar

1100001 => 316 11000001 => 172 100 => 26 1000 => 112

Para você fazer

Depois que implementar mostre para o professor

Dopois	que	TITPIC	, iii cii cai	11100010	Para	professor
П						

e depois que testar com sucesso, ache o comprimento da sequência de Collatz para o número

783953

Responda aqui:				

501-75758 - le pa