Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76201 ANA GLORIA DE SOUZA BRITO 24CC1101 - 1 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.				
2^{-1}	0,5			
2^{-2}	0,25			
2^{-3}	0,125			
2^{-4}	0,0625			
2^{-5}	0,03125			
2^{-6}	0,015625			
2^{-7}	0,0078125			
2^{-8}	0,00390625			

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1100H10Ha de babe	- para sase ro
base 2	base 10
0 0 1 1 1 0 1 1	
0 0 1 1 1 1 1 1	
0 1 0 0 0 0 0 1	
0 1 0 0 1 0 0 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10	base 2					
				*		
55						
74						
76						
89						
INDIQUE A						
INDIQUE A COLUNA *						

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

1001110,10001100 0 0 0 1 1 0 0 0, 1 0 1 0 0 1 0 0

4. Converta de base 10 para base 2 os fracionários

> 122.453125 123.656250

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76201 - ga/ a

U Positivo - UTFPR - PUCPr - 06/05/2024 -13:05:04.8 Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76218 ANDRE SANCHES $24\mathrm{CC}1101$ - 2 entregar até $23/\mathrm{mai}/24$

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.				
0,5				
0,25				
0,125				
0,0625				
0,03125				
0,015625				
0,0078125				
0,00390625				

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 01001010 0 1 0 1 1 0 0 1 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
54					
76					
84					
92					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

1 1 1 0 0 0 0 0, 1 1 1 0 1 0 0 0 10011011,0011100

4. Converta de base 10 para base 2 os fracionários

> 63.390625 249.562500

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76218 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76225 CASSIO COELHO PAZ 24CC1101 - 3 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.				
2^{-1}	0,5			
2^{-2}	0,25			
2^{-3}	0,125			
2^{-4}	0,0625			
2^{-5}	0,03125			
2^{-6}	0,015625			
2^{-7}	0,0078125			
2^{-8}	0,00390625			

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011_2 , 2. 100111100_2 , 3. 1101011000_2 .

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 01011001 0 1 0 1 1 1 1 0 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10		base	e 2		
		*			
61					
80					
92					
95					
INDIQUE A COLUNA *					
COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

1001110,00011100 0 0 0 0 0 0 1 1, 0 1 0 0 0 1 0 0

4. Converta de base 10 para base 2 os fracionários

> 53.531250 71.750000

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76225 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76232 CAUA DOS SANTOS COSTA 24CC1101 - 4 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

	3 0
De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

2^{-1}	0,5
2^{-2}	0,25
2^{-3}	0,125
2^{-4}	0,0625
2^{-5}	0,03125
2^{-6}	0,015625
2^{-7}	0,0078125
2^{-8}	0,00390625

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base	2 para base 10
base 2	base 10
0 1 0 0 0 0 0 1	
0 1 0 1 1 0 1 0	
0 1 0 1 1 1 0 0	
0 1 1 0 0 0 1 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

2. Converte de Sase 10 para sase 2			
base 10	base 2		
	*		
62			
68			
82			
89			
INDIQUE A COLUNA *			

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 1 1 1 0 1 0, 1 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0, 1 1 0 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 214.421875 41.984375

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76232 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76249 CAUE DAS NEVES MACHADO 24CC1101 - 5 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário ? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

para base 2

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

2^{-1}	0,5
2^{-2}	0,25
2^{-3}	0,125
2^{-4}	0,0625
2^{-5}	0,03125
2^{-6}	0,015625
2^{-7}	0,0078125
2^{-8}	0,00390625

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\hat{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base	2 para base 10
base 2	base 10
0 0 1 1 0 0 1 1	
0 1 0 0 1 0 0 0	
0 1 0 0 1 0 1 0	
0 1 0 1 0 0 0 0	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
55					
63					
70					
83					
INDIQUE A COLUNA *					
COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 0 0 1 1 0 0, 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1, 1 0 0 0 1 1 0 0

4. Converta de base 10 para base 2 os fracionários

> 139.343750 117.375000

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76249 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76256 CLEVERSON LUIZ VOITACH JUNIOR 24CC1101 - 6 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raça as s	egamices convers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

TICOTITUTE GC BGBC	2 para sase ro
base 2	base 10
0 0 1 1 0 0 1 1	
0 1 0 0 0 1 0 0	
0 1 0 1 0 1 0 1	
0 1 0 1 1 0 0 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10		base	e 2		
		*			
54					
62					
64					
81					
INDIQUE A COLUNA *					
COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 1 0 0 0 1 0, 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0, 1 1 0 0 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 165.468750 214.656250

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76256 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76263 DAVI HONORIO ROSA 24CC1101 - 7 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	ogamicos comiers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

	3 0
De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.			
2^{-1}	0,5		
2^{-2}	0,25		
2^{-3}	0,125		
2^{-4}	0,0625		
2^{-5}	0,03125		
2^{-6}	0,015625		
2^{-7}	0,0078125		
2^{-8}	0,00390625		

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 1 0 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 01100001 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
68					
72					
73					
89					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 0 1 0 0 1 0, 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0, 1 0 0 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

45.828125 177.343750

Resposta

101-76263 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76270 DORA DOS SANTOS PELLANDA 24CC1101 - 8 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	0841111000 00111010
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

 $\begin{array}{l} {\rm Quanto~ele~vale~em~decimal?} \\ {\rm 1\times 2^2 + 0\times 2^1 + 1\times 2^0 + 1\times 2^{-1} + 0\times 2^{-2} + 1\times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}. \end{array}$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.			
2^{-1}	0,5		
2^{-2}	0,25		
2^{-3}	0,125		
2^{-4}	0,0625		
2^{-5}	0,03125		
2^{-6}	0,015625		
2^{-7}	0,0078125		
2^{-8}	0,00390625		

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6 e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\hat{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1.

1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base 2 para base 10			
base 2	base 10		
0 0 1 1 0 1 1 1			
0 1 0 0 0 1 1 1			
0 1 0 0 1 1 0 0			
0 1 0 1 1 1 0 1			
SOME OS 4 VA-			
LORES			

2. Converta de base 10 para base 2

2. Converte de babe 10 para babe 2				
base 10	base 2			
	*			
54				
60				
67				
92				
INDIQUE A COLUNA *				
COLUNA *				

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

10100111, 10001100 1 1 1 1 0 0 1 1, 0 1 0 1 0 1 0 0

4. Converta de base 10 para base 2 os fracionários

> 170.125000 221.468750

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76270 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76287 ENZO KAUAN CARVALHO 24CC1101 - 9 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário ? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
00	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.			
0,5			
0,25			
0,125			
0,0625			
0,03125			
0,015625			
0,0078125			
0,00390625			

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1.

1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

TICOTITUTE GC BGBC	- para sase ro
base 2	base 10
0 0 1 1 1 1 0 0	
0 1 0 0 0 1 0 1	
0 1 0 1 1 0 1 1	
0 1 1 0 0 1 0 0	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
53					
81					
84					
91					
INDIQUE A					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

10100000,01111000 0 1 1 0 0 0 1 0, 1 1 0 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

155.171875 209.375000

Exercício	Resposta
1. Some os 4 va-	
lores	
2 6 1	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76287 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76294 FABRICIO JAWORSKI FERREIRA 24CC1101 - 10 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- * O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cras megaciras de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011_2 , 2. 100111100_2 , 3. 1101011000_2 .

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 1 0 1 0 0 1 0 01010100 01010111 01100000 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
66					
77					
85					
100					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 1 1 0 0 1 0, 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0, 1 1 1 1 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

23.343750 9.500000

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76294 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. capl Idoeta) VIVXk04a, V: 1.08 76306 FELIPE FERNANDES DOS SANTOS 24CC1101 - 11 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.			
2^{-1}	0,5		
2^{-2}	0,25		
2^{-3}	0,125		
2^{-4}	0,0625		
2^{-5}	0,03125		
2^{-6}	0,015625		
2^{-7}	0,0078125		
2^{-8}	0,00390625		

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

Treestrer de babe	- para sase ro
base 2	base 10
0 0 1 1 0 1 0 0	
0 0 1 1 1 1 1 0	
0 1 0 0 0 1 1 0	
0 1 0 1 0 0 0 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

	base 10 para sase 2		
base 10	base 2		
	*		
64			
67			
68			
87			
INDIQUE A COLUNA *			
COLUNA *			

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

1 1 0 0 0 0 0 0, 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1, 0 1 0 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 130.328125 252.421875

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76306 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76313 GABRIEL BORDIGNON 24CC1101 - 12 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

Treestrer de babe	- para sase ro
base 2	base 10
0 0 1 1 1 1 1 1	
0 1 0 0 0 0 1 0	
0 1 0 1 1 1 1 0	
0 1 1 0 0 0 1 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
69					
70					
89					
91					
INDIQUE A					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 0 0 0 1 0 0, 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1, 1 0 0 0 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 136.218750 123.484375

Exercício	Resposta	
1. Some os 4 va-		
lores		
2. Coloque a co-		
luna *		
3.1 o número		
que você achou		
3.2 O número		
que você achou		
4.1 os 4 bits cen-		
trais		
4.2 os 4 bits cen-		
trais		

101-76313 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76320 GEOVANNI TEIXEIRA ARAUJO 24CC1101 - 13 entregar até 23/mai/24 _ / _

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e $9\ {\rm como}\ {\rm símbolos}\ {\rm para}\ {\rm escrever}\ {\rm números}.$

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga ab b	ogamicos comiers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\hat{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base	2 para base 10
base 2	base 10
0 1 0 0 0 1 0 1	
0 1 0 1 0 0 0 1	
0 1 0 1 0 0 1 1	
0 1 0 1 1 0 0 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10		base	e 2		
		*			
69					
77					
84					
99					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

10100010,01110100 0 1 1 0 0 1 0 0, 1 1 0 0 1 1 0 0

4. Converta de base 10 para base 2 os fracionários

> 176.578125 233.328125

Exercício	Resposta	_
1. Some os 4 va-		
lores		
2. Coloque a co-		
luna *		
3.1 o número		
que você achou		
3.2 O número		
que você achou		
4.1 os 4 bits cen-		
trais		
4.2 os 4 bits cen-		_
trais		

101-76320 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76337 GUILHERME CAVALER KUSTER 24CC1101 - 14 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	ogamicos comiers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377 (. , , .

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.			
2^{-1}	0,5		
2^{-2}	0,25		
2^{-3}	0,125		
2^{-4}	0,0625		
2^{-5}	0,03125		
2^{-6}	0,015625		
2^{-7}	0,0078125		
2^{-8}	0,00390625		

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

Treestrer de babe	- para sase re
base 2	base 10
0 0 1 1 1 0 0 1	
0 0 1 1 1 1 0 1	
0 1 0 0 1 0 0 1	
0 1 0 1 1 1 1 0	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

-	

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 0 1 1 0 0 0, 1 0 1 1 0 1 0 0 10001010,01000100

4. Converta de base 10 para base 2 os fracionários

> 44.562500 134.453125

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76337 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. capl Idoeta) VIVXk04a, V: 1.08 76344 GUILHERME LUCIANO DE MELO 24CC1101 - 15 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário ? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

para base 2

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

CIGO IICE	Sattivas ac 2.
2^{-1}	0,5
2^{-2}	0,25
2^{-3}	0,125
2^{-4}	0,0625
2^{-5}	0,03125
2^{-6}	0,015625
2^{-7}	0,0078125
2^{-8}	0,00390625

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\hat{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

2. Converta de base 10 para base 2

base 10	base 2							
	*							
52								
66								
71								
83								
INDIQUE A COLUNA *								

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

1 1 0 1 0 0 1 0, 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1, 1 1 1 0 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 87.562500 144.062500

Exercício	Resposta
1. Some os 4 va-	
lores	
2 6 1	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76344 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76351 HENRI KIM PINHEIRO RODRIGUES 24CC1101 - 16 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377 (. , , .

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.				
2^{-1}	0,5			
2^{-2}	0,25			
2^{-3}	0,125			
2^{-4}	0,0625			
2^{-5}	0,03125			
2^{-6}	0,015625			
2^{-7}	0,0078125			
2^{-8}	0,00390625			

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

Treestrer de babe	1. Converta de base 2 para base 10				
base 2	base 10				
0 0 1 1 1 1 0 0					
0 1 0 0 1 0 0 0					
0 1 0 1 1 0 0 0					
0 1 0 1 1 0 1 0					
SOME OS 4 VA-					
LORES					

2. Converta de base 10 para base 2

base 10	base 2						
			*				
51							
62							
67							
100							
INDIQUE A COLUNA *							
COLUNA *							

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 0 1 1 0 1 0, 0 0 1 0 1 1 0 0 10100010,1001000

4. Converta de base 10 para base 2 os fracionários

> 239.140625 244.531250

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76351 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76368 HENRIQUE NOGUEIRA RIBEIRO 24CC1101 - 17 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	ogamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

CIGO IICE	Sattivas ac 2.
2^{-1}	0,5
2^{-2}	0,25
2^{-3}	0,125
2^{-4}	0,0625
2^{-5}	0,03125
2^{-6}	0,015625
2^{-7}	0,0078125
2^{-8}	0,00390625

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 01011101 01100010 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10	base 2						
			*				
70							
78							
90							
97							
INDIQUE A							
INDIQUE A COLUNA *							

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 0 1 0 1 1 1, 1 0 1 0 0 1 0 0 10000111,11011100

4. Converta de base 10 para base 2 os fracionários

> 219.875000 48.062500

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76368 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76494 HENRIQUE RANKEL CRENCHIGLOVA 24CC1101 - 18 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário ? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
37.4	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.					
2^{-1}	0,5				
2^{-2}	0,25				
2^{-3}	0,125				
2^{-4}	0,0625				
2^{-5}	0,03125				
2^{-6}	0,015625				
2^{-7}	0,0078125				
2^{-8}	0,00390625				

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.com/orta de babe 2 para babe 10						
base 2	base 10					
0 1 0 0 1 0 1 0						
0 1 0 1 0 1 0 0						
0 1 0 1 1 0 1 0						
0 1 0 1 1 1 1 1						
SOME OS 4 VA-						
LORES						

2. Converta de base 10 para base 2

base 10	base 2							
	*							
65								
77								
92								
97								
INDIQUE A COLUNA *								

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

1 1 1 1 0 0 0 0, 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0, 1 1 0 1 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 49.484375 139.718750

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76494 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76375 JOAO FRANCISCO LEONEL DE SOUSA 24CC1101 - 19 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.					
2^{-1}	0,5				
2^{-2}	0,25				
2^{-3}	0,125				
2^{-4}	0,0625				
2^{-5}	0,03125				
2^{-6}	0,015625				
2^{-7}	0,0078125				
2^{-8}	0,00390625				

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1. Converta de base 2 para base 10						
base 2	base 10					
0 0 1 1 0 1 1 1						
0 1 0 0 0 1 0 0						
0 1 0 0 1 1 1 1						
0 1 0 1 0 1 0 0						
SOME OS 4 VA-						
LORES						

2. Converta de base 10 para base 2

base 10	base 2							
				*				
54								
62								
70								
87								
INDIQUE A COLUNA *								

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 0 0 1 0 0 0, 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0, 1 1 1 0 0 1 0 0

4. Converta de base 10 para base 2 os fracionários

> 14.656250 191.203125

Resposta

101-76375 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76382 LANA ALESSANDRA GALEGO VEIGA 24CC1101 - 20 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
37.4	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

2^{-1}	0,5
2^{-2}	0,25
2^{-3}	0,125
2^{-4}	0,0625
2^{-5}	0,03125
2^{-6}	0,015625
2^{-7}	0,0078125
2^{-8}	0,00390625

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
73					
80					
93					
95					
INDIQUE A					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 1 0 0 0 1 1, 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1, 1 1 0 1 1 1 0 0

4. Converta de base 10 para base 2 os fracionários

76.500000 147.343750

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76382 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76399 LORENZO QUIRINO DE SALLES 24CC1101 - 21 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e $9\ {\rm como}\ {\rm símbolos}\ {\rm para}\ {\rm escrever}\ {\rm números}.$

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	ogamicos comiers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.				
2^{-1}	0,5			
2^{-2}	0,25			
2^{-3}	0,125			
2^{-4}	0,0625			
2^{-5}	0,03125			
2^{-6}	0,015625			
2^{-7}	0,0078125			
2^{-8}	0,00390625			

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\hat{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base 2 para base 10				
base 2	base 10			
0 1 0 0 0 0 0 0				
0 1 0 1 0 0 0 0				
0 1 0 1 0 0 1 1				
0 1 0 1 1 1 1 0				
SOME OS 4 VA-				
LORES				

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
53					
65					
80					
91					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 0 1 0 0 1 1, 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1, 0 1 1 1 0 1 0 0

4. Converta de base 10 para base 2 os fracionários

> 51.703125 68.703125

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76399 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76401 LUAN TEIXEIRA DIBE 24CC1101 - 22 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

6 9 11 15	
11	
15	
31	
33	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potên-

cias negativas de 2.			
2^{-1}	0,5		
2^{-2}	0,25		
2^{-3}	0,125		
2^{-4}	0,0625		
2^{-5}	0,03125		
2^{-6}	0,015625		
2^{-7}	0,0078125		
2^{-8}	0,00390625		

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1.

1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1100H10Ha de babe	- para sase ro
base 2	base 10
0 0 1 1 1 1 0 1	
0 1 0 1 0 0 1 0	
0 1 0 1 1 0 0 0	
0 1 0 1 1 0 1 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
52					
74					
77					
93					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

1 1 1 1 1 0 1 0, 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0, 1 0 0 1 0 1 0 0

4. Converta de base 10 para base 2 os fracionários

132.250000 17.437500

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76401 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76418 MURILO DIRCKSEN CAMPOS 24CC1101 - 23 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	ogamicos comiers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
37/	, . ,

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

	3
2^{-1}	0,5
2^{-2}	0,25
2^{-3}	0,125
2^{-4}	0,0625
2^{-5}	0,03125
2^{-6}	0,015625
2^{-7}	0,0078125
2^{-8}	0,00390625
	1

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1.

1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base	z para base 10
base 2	base 10
0 1 0 0 0 1 1 0	
0 1 0 1 0 1 0 1	
0 1 0 1 1 1 0 0	
0 1 0 1 1 1 0 1	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10		bas	e 2		
		*			
61					
69					
83					
90					
INDIQUE A COLUNA *					

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

10110010,1010100 0 1 0 0 0 1 1 0, 0 0 1 1 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

57.218750 6.390625

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76418 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76425 OLAVO AUGUSTO ROSSI 24CC1101 - 24 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 1538 e para 15528. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1. Converta de base 2 para base 10				
base 2	base 10			
0 0 1 1 0 1 0 1				
0 1 0 1 0 0 1 0				
0 1 0 1 0 1 1 1				
0 1 1 0 0 0 1 0				
SOME OS 4 VA-				
LORES				

2. Converta de base 10 para base 2

base 10	base 2					
	*					
75						
85						
86						
87						
INDIQUE A COLUNA *						

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 0 1 0 1 1 1, 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0, 1 1 1 0 0 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 192.453125 88.656250

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76425 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76432 PAULO GUSTAVO TORRES 24CC1101 - 25 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - $-\,$ 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4\times 10^1=4\times 10=40.$
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base 2 para base 10				
base 2	base 10			
0 1 0 0 1 1 0 1				
0 1 0 0 1 1 1 0				
0 1 0 1 1 1 0 1				
0 1 0 1 1 1 1 1				
SOME OS 4 VA-				
LORES				

2. Converta de base 10 para base 2

base 10	base 2						
				*			
59							
76							
97							
98							
INDIQUE A COLUNA *							

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 1 0 1 0 0 0 0, 1 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1, 0 1 1 1 0 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 129.031250 49.234375

Exercício	Resposta	
1. Some os 4 va-		
lores		
2. Coloque a co-		
luna *		
3.1 o número		
que você achou		
3.2 O número		
que você achou		
4.1 os 4 bits cen-		
trais		
4.2 os 4 bits cen-		
trais		

101-76432 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. capl Idoeta) VIVXk04a, V: 1.08 76449 PEDRO CAPOTE DA CONCEICAO SOAR 24CC1101 - 26 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga ab b	ogamicos comiers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário ? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

	3 0
De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.				
2^{-1}	0,5			
2^{-2}	0,25			
2^{-3}	0,125			
2^{-4}	0,0625			
2^{-5}	0,03125			
2^{-6}	0,015625			
2^{-7}	0,0078125			
2^{-8}	0,00390625			

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 678 em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\hat{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1. Converta de Base 2 para Base 10				
base 2	base 10			
0 0 1 1 1 1 0 1				
0 0 1 1 1 1 1 0				
0 0 1 1 1 1 1 1				
0 1 0 0 1 1 0 0				
SOME OS 4 VA-				
LORES				

2. Converta de base 10 para base 2

2. comforta de	base to para base 2					
base 10	base 2					
	*					
70						
81						
86						
91						
INDIQUE A COLUNA *						
COLUNA *						

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 1 1 0 1 1 1, 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1, 0 0 0 0 0 1 0 0

4. Converta de base 10 para base 2 os fracionários

205.265625 4.312500

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76449 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76456 PEDRO HENRIQUE DE SOUZA 24CC1101 - 27 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- $\star~$ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga ab b	ogamicos comiers
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	
377	

Números fracionários também podem ser con-Basta extender a regra de conversão vertidos. à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.				
2^{-1}	0,5			
2^{-2}	0,25			
2^{-3}	0,125			
2^{-4}	0,0625			
2^{-5}	0,03125			
2^{-6}	0,015625			
2^{-7}	0,0078125			
2^{-8}	0,00390625			

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} . Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

TICOTITOTOR GC BGBC	= para sase ro
base 2	base 10
0 0 1 1 0 1 0 1	
0 0 1 1 1 1 0 1	
0 1 0 1 0 0 1 0	
0 1 0 1 1 0 0 0	
SOME OS 4 VA-	
LORES	

2. Converta de base 10 para base 2

base 10	base 2						
				*			
63							
66							
72							
76							
INDIQUE A							
INDIQUE A COLUNA *							

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 1 0 0 0 0 1, 1 1 1 0 0 0 0 0 10010000,11100000

4. Converta de base 10 para base 2 os fracionários

> 240.515625 104.531250

Exercício	Resposta	
1. Some os 4 va-		
lores		
2. Coloque a co-		Ī
luna *		
3.1 o número		
que você achou		
3.2 O número		1
que você achou		
4.1 os 4 bits cen-		Ī
trais		
4.2 os 4 bits cen-		1
trais		

101-76456 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76463 PEDRO HENRIQUE STAATS 24CC1101 - 28 entregar at
é $23/\mathrm{mai}/24$

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faça as seguintes conversões:

3	-0
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

B 1 10	, ,
De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011_2 , 2. 100111100_2 , 3. 1101011000_2 .

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 01011100 01100000 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10	base 2						
				*			
66							
67							
83							
84							
INDIQUE A							
INDIQUE A COLUNA *							

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 1 1 0 1 1 0, 1 0 1 1 1 1 0 0 10101110,11001100

4. Converta de base 10 para base 2 os fracionários

> 117.484375 50.109375

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76463 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76470 SARAH FERNANDES CHELIGA 24CC1101 - 29 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

B 1 10	, ,
De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas de 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011₂, 2. 10011100₂, 3. 1101011000₂.

D. Converta de decimal para hexadecimal: 1.

 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

1.Converta de base 2 para base 10		
base 2	base 10	
0 0 1 1 1 0 1 0		
0 1 0 0 0 0 0 0		
0 1 0 0 0 1 1 0		
0 1 0 1 1 0 0 1		
SOME OS 4 VA-		
LORES		

2. Converta de base 10 para base 2

base 10	base 2		
	*		
64			
66			
88			
98			
INDIQUE A COLUNA *			

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 1 1 1 1 1 1, 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0, 1 1 1 1 1 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 159.453125 71.625000

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76470 - ga/ a

Prof Dr P Kantek (pkantek@gmail.com) Sistemas de Numeração (bas. cap1 Idoeta) VIVXk04a, V: 1.08 76487 WILLIAN IELEM PAVOSKI 24CC1101 - 30 entregar até 23/mai/24

Sistemas de Numeração

O sistema de numeração é a base da operação de contagem, que vem a ser a origem de toda a matemática (a rainha das ciências, a propósito). Os sistemas de numeração posicionais (a grande contribuição dos indianos e depois dos árabes), tem como característica a escolha de um número fixo, denominado BASE, que nos sistemas mencionados vale 10. Depois disso, se necessitam esse mesmo número de símbolos distintos, começando sempre pelo ZERO. Assim, tem-se 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9 como símbolos para escrever números.

A interpretação de um número com vários dígitos, embora seja feita de maneira quase automática pelo nosso cérebro, passa por algumas operações:

- * a separação dos dígitos. Assim, o número 346, é analisado como formado por 3, 4 e depois 6.
- * a identificação da base: neste caso, 10.
- * A multiplicação da direita para a esquerda de potências crescentes da base, começando com o expoente ZERO. Então:
 - 6 é multiplicado pela base (10) elevada ao expoente 0. Dá $6 \times 10^{0} = 6 \times 1 = 6$.
 - 4 é multiplicado pela base (10) elevada ao expoente 1. Dá $4 \times 10^1 = 4 \times 10 = 40$.
 - 3 é multiplicado pela base (10) elevada ao expoente 2. Dá $3 \times 10^2 = 3 \times 100 = 300$.
- * As parcelas achadas são somadas. No caso 300 + 40 + 6 = 346.
- Aqui fica claro a importância do zero. Ele é usado para reservar posições não usadas, a fim de que o número fique univocamente determinada.
- ⋆ Cada dígito no número passa a ter dois valores: o absoluto e o relativo. Como exemplo, em 346, o 3 tem valor absoluto=3 e valor relativo=300.

No mundo eletrônico-digital que nos cerca (celular, relógio, GPS, tevê, som no carro, computador, I-pxd, cartão bancário, etc, etc, etc), o sistema de numeração básico e sempre presente é o de base=2. As razões são físico-históricas e têm a ver com confiabilidade, segurança e facilidade. Fazendo a analogia com o visto no sistema decimal, tem-se aqui:

- \star BASE = 2
- * Dois (e apenas dois) dígitos: 0 e 1.

Uma operação simples de contagem neste sistema agora é: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, 10000 e assim por diante. Nenhuma heresia foi cometida, todas as regras da numeração foram seguidas.

Faca as seguintes conversões:

raga as s	egamicos comitors
De base 2	para base 10
101	
1000	
111	
1001	
101010	
110001	

Deve-se estudar e treinar o caminho oposto: dado um número decimal, digamos 18, como obter o equivalente binário? A regra aponta para divisões sucessivas pela base, até que o quociente e o resto sejam zero.

- * Pega-se o número a transformar (18) e dividese-o pela base (2) Fica: $18 \div 2 = 9$ e resto 0.
- Divide-se o quociente obtido (9) pela base (2). Fica: $9 \div 2 = 4$ e resto 1.
- * Idem e fica: $4 \div 2 = 2$ e resto 0.
- * Idem e fica: $2 \div 2 = 1$ e resto 0.
- * Idem e fica: $1 \div 2 = 0$ e resto 1.

- $\star~$ O número binário é obtido recolhendo-se os restos de baixo para cima: 1, 0, 0, 1, 0.
- * Finalmente, tem-se $18_{10} = 10010_2$.

Note que, sempre que necessário, convenciona-se escrever a base à direita do número na forma de um subscrito. Faça as seguintes conversões:

De base 10	para base 2
6	
9	
11	
15	
31	
33	

Números fracionários também podem ser convertidos. Basta extender a regra de conversão à direita da vírgula decimal. Veja um exemplo: O número decimal 10,5 pode ser entendido como $1 \times 10^1 + 0 \times 10^0 + 5 \times 10^{-1} = 10 + 0 + 0, 5 = 10, 5.$

Suponha-se agora o número binário 101,101.

Quanto ele vale em decimal? $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = 4 + 1 + 0, 5 + 0, 125 = 5, 625_{10}.$

Para sua orientação, eis uma tabela das potências negativas de 2.

cias negativas ac 2.		
2^{-1}	0,5	
2^{-2}	0,25	
2^{-3}	0,125	
2^{-4}	0,0625	
2^{-5}	0,03125	
2^{-6}	0,015625	
2^{-7}	0,0078125	
2^{-8}	0,00390625	

Acompanhe o processo de converter um número de base 10 fracionário em seu equivalente binário. Por exemplo, o número $8,375_{10}$ em binário. Tudo começa pela parte inteira, que é convertida como já se sabe. Então $8_{10} = 1000_2$. A parte fracionária (0,375) é convertida sendo multiplicada sucessivamente por 2.

Então: $0.375 \times 2 = 0.750$. O 0 inteiro é o primeiro dígito binário após a virgula, e o processo recomeça.

Então, $0,750 \times 2 = 1,5$. O 1 inteiro é o segundo dígito e o processo recomeça com 0,5.

Então $0.5 \times 2 = 1.00$. O 1 inteiro é o terceiro dígito e o processo termina já que a parte fracionária é zero.

Ao final, tem-se que $0,375_{10}=0,011_2$ e o número completo fica $8,375_{10} = 1000,011_2$.

Pode ocorrer, ao longo deste processo da parte fracionária reaparecer com o mesmo valor. Este fato indica uma dízima periódica e continuando com o cálculo vai-se produzir um número infinito. Tal fato deve ser indicado por meio de reticências, parando-se a seguir o cálculo. Para ver isto na prática, faça a conversão de $4,8_{10} = ?_2$.

Outra observação importante é que este processo normalmente gera números muito grandes. O leitor pode abortar o processo tão logo uma precisão aceitável seja alcançada.

Base octal. É a numeração de base 8, muito usada em eletrônica, sobretudo em circuitos com palavras de 6 bits. Usa os números 0, 1, 2, 3, 4, 5,6e 7. Acompanhe a contagem neste sistema: 0, 1, $2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 20,\ \ldots,$ 77, 100, 101, ...

Para converter de base octal para base decimal, multiplica-se cada dígito pelas potências crescentes da base 8. Por exemplo, $144_9 = ?_{10}$. Tem-se $4 \times 8^0 + 4 \times 8^1 + 1 \times 8^2 = 4 + 32 + 64 = 100_{10}$.

Exercícios: 1. converta o número 14_8 em decimal; 2. Converta o número 67s em decimal; 3. Idem para 153₈ e para 1552₈. 4. Por que o número 15874_8 não pode ser um número octal?

A conversão de octal para binário é simples: Cada dígito octal é traduzido em 3 bits, incluindose os zeros à esquerda, se necessário.

Exercícios: Converta para binário os seguintes octais: 1. 34_8 , 2. 536_8 e $\bar{3}$. 44675_8 .

A conversão de binário para octal exige a separação do número binário em grupos de 3 bits, eventualmente completando-se zeros à esquerda. Cada grupo de 3 bits gera um número octal.

Exercícios: Converta para octal os seguintes binários: 1. 1011_2 , 2. 10011100_2 , 3. 1101011000_2 .

A conversão de decimal para octal pressupõe a divisão sucessiva por 8, obtendo-se os restos até que o último quociente seja zero. Por exemplo, seja converter 92_{10} para octal. Divide-se 92 por 8, obtendo-se 11 e resto 4. Daí divide-se 11 por 8 obtendo-se 1 e resto 3. Finalmente, divide-se 1 por 8, obtendo-se 0 e resto 1. A conversão é 134_8 .

Um processo alternativo aparentemente mais trabalhoso, mas que tem lá seu charme é converter o número a binário antes e a octal depois.

Exercícios: Converta os decimais a seguir em octal: $1.\ 107_{10},\ 2.\ 185_{10},\ 3.\ 2048_{10},\ 4.\ 4097_{10}.$ Base Hexadecimal. É a numeração de base

16 e permite uma conversão quase automática entre a base 2 e a 16 (já que $2^4=16$) servindo como uma abreviação importante da base 2. Note que ao passar da base 2 para a base 16, cada 4 dígitos do número binário são convertidos em um único dígito hexadecimal.

Exercícios: A. Converta para decimal os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$.

B. Converta de hexadecimal para binário os números: 1. 479_{16} , 2. $4AB_{16}$, 3. $BD3_{16}$, 4. $2D3F_{16}$

C. Converta de binário para hexadecimal: 1. 1011_2 , 2. 100111100_2 , 3. 1101011000_2 .

D. Converta de decimal para hexadecimal: 1. 107_{10} , 2. 185_{10} , 3. 2048_{10} , 4. 4097_{10} .

Adição, subtração e multiplicação no sistema binário. Antes de estudar estas operações, relembre-se que os sistemas octais e hexadecimal são apenas simplificações do único sistema que realmente importa na eletrônica digital que é o biná-

Para você fazer

1.Converta de base 2 para base 10

base 2 base 10 0 0 1 1 1 0 0 1 0 0 1 1 1 1 1 0 01000010 01000100 SOME OS 4 VA-LORES

2. Converta de base 10 para base 2

base 10	base 2					
				*		
72						
75						
81						
92						
INDIQUE A COLUNA *						

Importante: alinha à DIREITA

3. Converta de base 2 para base 10 os fracionários

0 0 0 0 0 1 0 0, 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1, 1 0 0 0 0 0 0 0

4. Converta de base 10 para base 2 os fracionários

> 35.984375 14.078125

Exercício	Resposta
1. Some os 4 va-	
lores	
2. Coloque a co-	
luna *	
3.1 o número	
que você achou	
3.2 O número	
que você achou	
4.1 os 4 bits cen-	
trais	
4.2 os 4 bits cen-	
trais	

101-76487 - ga/ a