| Universidade Positivo- Engennaria | da Computação 11/02/2019 - 12:3 | <del>ງ</del> ວ:ວ9.0 |
|-----------------------------------|---------------------------------|---------------------|
| Inteligência Artificial           | Prof Dr P Kantek (pkantek@up.e  | du.br)              |
| Algoritmo A*: quebra cabeça 8     | VIVO826t V                      | J: 4.15             |
| 1                                 |                                 |                     |
| Exercício: 1                      | / /                             |                     |

### Busca em Espaco de Estados. Algoritmo A\*

Imagine o quebra cabeça 8 (ou 15), também conhecido como TARKIN Tratase de um dispositivo de plástico, com espaço para 9 pedras (3x3). Existem apenas 8 pedras, um espaço reservado fica vazio. Os 4 vizinhos do espaço podem se mover sobre ele, e tudo se dá como se o espaco se movesse ao longo do tabuleiro.

Trata-se um problema de busca em espaço de estados. Conforme a definição um problema deste tipo pode ser posto como P=I,O,C

Neste caso I é a configuração inicial do tabuleiro. Vamos representá-la como um vetor numérico de 1 a 9, onde o espaço está representado pelo 9. Assim, uma determinada configuração como 3, 5, 4, 1, 2, 6, 7, 9, 8 deve ser entendida como

| circulata coi |   |   |
|---------------|---|---|
| 3             | 5 | 4 |
| 1             | 2 | 6 |
| 7             |   | 8 |

A lista dos 4 operadores refere-se aos pseudo-movimentos do espaço e são

- 1. o espaço move-se para cima
- 2. o espaço move-se para a direita
- 3. para baixo
- 4. para a esquerda

A configuração final procurada (alvo) é: 1 2 3 / 4 5 6 / 7 8 9

Apenas metade dos possíveis estados obtidos combinando-se as pedras pode ser resolvido. O número de inversões deve ser par. Uma explicação deste fato pode ser encontrada no excelente livro "O ultimo Teorema de Fermat"

A função h' sera um estimador do esforço necessário para chegar à condição final. Podem-se usar diversas funções estimadoras. Quanto maior a qualidade de h' mais eficiente será a busca.

Por simplicidade, usaremos uma função quase trivial, que conta a quantidade de movimentos necessários para chegar até a configuração final.

Por exemplo, o h' do estado (2 4 6 / 8 3 1 / 5 9 7) é: 15. A escolha do próximo nodo é: mínimo (h' + profundidade do nodo) Nodos já existentes na árvore devem ser desprezados.

Em caso de empate, expandir o nodo cujo número seja menor.

### Exemplo

- Seja a configuração  $n_1$ = 4 3 5 / 7 1 9 / 8 2 6. Na profundidade 0 seu h' é: 12 (1+1+2+1+2+1+1+2+1). Total do nodo = 12. Este é o nodo
- O nodo  $n_2$  é o filho 1 de  $n_1$  que é: 4 3 9 / 7 1 5 / 8 2 6, e cujo h' é 12 e a profundidade é 1. Total=13. Comparando  $n_1$  (12+0) com  $n_2$  (12+1) o nodo  $n_1$  é menor e deve ser expandido. O próximo operador seria o 2, que é inválido. Com isso o nodo 3 será o filho de  $n_1$  com operador
- $\bullet\,$  O nodo  $n_3$ é o filho de  $n_1,$  com op=3 e  $n_3{=}4$ 3 5 / 7 1 6 / 8 2 9. Este nodo tem h=10, e p=1, logo seu custo é 10+1=11
  - Comparando os custos temos  $n_1=12,\;n_2=13$  e  $n_3=11.$  O escolhido é o
- Com isso, o  $n_4$  será gerado a partir de  $n_3$ , com operador=4 (os operadores 1, 2 e 3 são inválidos. Porque ?. Note que  $n_3$  passa a ter custo  $\infty$  pois esgotou toda a sua capacidade de gerar filhos.
  - $n_4{=}{\rm filho}\;{\rm de}\;n_3,\;{\rm op}{=}4,\;{\rm que}\;{\rm d\acute{a}}\;n_4{=}4\;3\;5\;/\;7\;1\;6\;/\;8\;9\;2\;({\rm h}{=}12,{\rm p}{=}2,{\rm T}{=}14)$ Comparando,  $n_1=12$ ,  $n_2=13$ ,  $n_3=\infty$ ,  $n_4=14$ , e o nodo escolhido é  $n_1$ .
- Com isso, o  $n_5$ , será gerado a partir de  $n_1$  com operador 4, e fica  $n_5$ = 4 3 5 / 7 9 1 / 8 2 6 (h=14,p=1,T=15). Note que  $n_1 = \infty$ .
  - Comparando  $n_1=\infty,\ n_2=13,\ n_3=\infty,\ n_4=14,\ n_5=15$  e o escolhido é o
- $n_6$  será gerado a partir de  $n_2$  com op=4 (1, 2 e 3 inválidos). Fica  $n_6$ =4 9 3 / 7 1 5 / 8 2 6 (h=12,p=2,T=14).  $n_2$  passa a ficar com  $\infty$ .
  - Comparando  $n_1 = \infty$ ,  $n_2 = \infty$ ,  $n_3 = \infty$ ,  $n_4 = 14$ ,  $n_5 = 15$ ,  $n_6 = 14$ . O escolhido é  $n_4$  (Note que como houve empate entre  $n_4$  e  $n_6$ , escolhe-se
- $n_7$ a partir de  $n_4,$ op=1, que dá  $n_7{=}4$  3 5 / 7 9 6 / 8 1 2 (h=14,p=3,T=17) Comparando  $n_1{=}n_2{=}n_3{=}\infty,~n_4{=}14,~n_5{=}15,$  $n_6=14$ ,  $n_7=17$ . O escolhido é  $n_4$  com op=4, pois os operadores 2 e 3 são inválidos.
- $n_8 \! = \,$ a partir de  $n_4,$ op=4 que dá  $n_8 \! = \! 4$  3 5 / 7 1 6 / 9 8 2 (h=12,p=3,T=15) e  $n_4$  fica  $\infty$ .
  - Comparando  $n_1=n_2=n_3=n_4=\infty$ ,  $n_5=15$ ,  $n_6=14$ ,  $n_7=17$ ,  $n_8=15$ . O escolhido é  $n_6$  que tem operadores 1 e 2 inválidos.
- $n_9$  deriva de  $n_6$ , op=3, que dá  $n_9$ =4 1 3 / 7 9 5 / 8 2 6 (h=10,p=3,T=13)
- Comparando  $n_1 = n_2 = n_3 = n_4 = \infty, n_5 = 15, n_6 = 14, n_7 =$  $17, n_8 = 15, n_9 = 13.$  O escolhido é  $n_9$  que tem operador 1 inválido.
- $n_{10}$  vem de  $n_9$ , op=2, que dá  $n_{10}$ =4 1 3 / 7 5 9 / 8 2 6 (h=8,p=4,T=12)
- ...E assim por diante...

## Para você fazer

Para resolver o exercício, suponha a seguinte configuração inicial

| 3 | 6 | 2 |  |
|---|---|---|--|
| 7 | 5 | 4 |  |
| 1 | 9 | 8 |  |

\_ / \_

### Pergunta Qual é o 15 nodo da árvore?

| Resposta |  |
|----------|--|
|          |  |
|          |  |
|          |  |
|          |  |
|          |  |

# Implementação

Recomenda-se a implementação deste algoritmo. Se for feita um projeto modular, outros problemas poderão ser resolvidos usando o mesmo produto, com mudanças apenas cosméticas.

Uma proposta de implementação sugere usar um BD relacional contendo uma estrutura de dados formada por:

| campo           | tipo     | tamanho |
|-----------------|----------|---------|
| número nodo     | N        | 8       |
| configuração    | variável |         |
| profundidade    | N        | 4       |
| hlinha          | N        | 2       |
| endereço do pai | N        | 8       |
| operador usado  | N        | 2       |

Com índices por configuração (para prevenir duplos) e por  $k_1 \times P_n + k_2 \times h'$ para recuperar o nodo candidato a expandir. O uso de um BD ao invés da memória tranquiliza quanto ao crescimento exponencial da árvore.

| As funções a desenvolver e suas funcionalidades são: |                                         |  |
|------------------------------------------------------|-----------------------------------------|--|
| Função                                               | o que deve fazer                        |  |
| inicialização                                        | estabelecer os parâmetros da rodada,    |  |
|                                                      | criar o BD e os índices capturar a con- |  |
|                                                      | figuração inicial e final e a herística |  |
| viabilidade                                          | análise se esta proposta inicial tem    |  |
|                                                      | solução                                 |  |
| principal                                            | loop: acha o menor, avalia se fim, ex-  |  |
|                                                      | pande o nodo, inclui no BD              |  |
| mostracaminho                                        | ao achar a solução recupera e imprime o |  |
|                                                      | caminho                                 |  |
| hlinha                                               | calcula e devolve a heurística          |  |
| achafilho                                            | a partir do pai e do operador calcula o |  |
|                                                      | filho                                   |  |

