```
UFPR UP UTFPR PUCPr
                                            05/08/2019 - 13:43:42.2
Prof Dr P Kantek (Pkantek@up.edu.br)
                                           Algoritmos de Calendário
VIVO031a V: 3.28
                           ALDREY LARISSA GASTAO NOGUEIRA
70546
```

Cálculo do dia da semana

19HEQ102 Ex: 1 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10)
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
____/ ____/ __
 A \leftarrow
                                      G \leftarrow
                                      H ←
 D \leftarrow \underline{\hspace{1cm}}
                                      R. ←
como R = \_, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400. SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

ODUCI	beer a quantitude de dias por mes.											
J	F	M	A	M	J	J	A	S	O	N	D	
31	28/29	31	30	31	30	31	31	30	31	30	31	

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
$E \leftarrow \underline{\hspace{1cm}}$	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	$\operatorname{ord}(\operatorname{Carn})$
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC}) \ \underline{\hspace{1cm}}$

____ , a Sexta Santa é E, com isso, o Carnaval é dia com isso, o Carnaval é dia ____/___ _/ ___ e Corpus Christi é ____/__

- 9/2306Calcule dia da semana do dia 29/ e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de 2306 _____/ _____/
- * Corpus-Christi de 2306 _____ / ____ / ____ * Calcule dia da semana do dia 29/ 2/1880e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~1880 _____/ _____/
- * Corpus-Christi de 1880 _ * Corpus-Christi de 100U _____/ ____ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

CAROLINE VEIGA DE MORAES

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 2 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10)
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                          G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                          R. ←
como R = \_, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4

 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

obter a quantitative de alab per mesi											
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

пса:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
F ←	ord(Páscoa)
G ←	ord(Carn)
H ←	ord(SexSan)
I ←	ord(CC)

_____ , a Sexta Santa é E, com isso, o Carnaval é dia com isso, o Carnaval é dia ____/___ _/ ___ e Corpus Christi é ____/__

Para você fazer

- Calcule dia da semana do dia 24/5/1822e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~1822 _____/ _____/
- e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 2342 _____/ ____
- * Corpus-Christi de 2342 _ * Corpus-Christi de 2542 _____/ ____ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short

puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?


```
UFPR UP UTFPR PUCPr
                                             05/08/2019 - 13:43:42.2
Prof Dr P Kantek (Pkantek@up.edu.br)
                                           Algoritmos de Calendário
VIVO031a V: 3.28
                          DANIEL FERNANDO ALMEIDA KARGER
70560
19HEQ102 Ex: 3 apos 28/08, 50\%
```

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10)
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
____/ ____/ __
 A \leftarrow
                                      G \leftarrow
                                      H ←
 D \leftarrow \underline{\hspace{1cm}}
                                      R. ←
como R = \_, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4

 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	obter a quantitative as area per mesi											
J	F	M	A	M	J	J	A	S	О	N	D	
31	28/29	31	30	31	30	31	31	30	31	30	31	

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
F ←	ord(Páscoa)
G ←	$\operatorname{ord}(\operatorname{Carn}) \ \underline{\hspace{1cm}}$
H ←	ord(SexSan)
I ←	ord(CC)

E, com isso, o Carnaval é dia

- Calcule dia da semana do dia 29/5/2116 e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 2116 _____/ ____
- * Corpus-Christi de 2116 _____ / ____ * Calcule dia da semana do dia 12/ 4/1780e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~1780 _____/ _____/
- * Corpus-Christi de 1780 _ * Corpus-Christi de 1/80 _____/ _____/ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70577 19HEQ102 Ex: 4 apos 28/08, 50% 05/08/2019 - 13:43:42.2 Algoritmos de Calendário

DAVI RAMOS JORGE

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e jesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o $Canon\ Paschalis$ devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano >1587), calcula-se o dia da semana usando a seguinte formulação:

```
\begin{split} A &\leftarrow \lfloor ((12-mes) \div 10) \\ B &\leftarrow ano - A \\ C &\leftarrow mes + (12 \times A) \\ D &\leftarrow \lfloor (B \div 100) \\ E &\leftarrow \lfloor (D \div 4) \\ F &\leftarrow E + 2 - D \\ G &\leftarrow \lfloor (365.25 \times B) \\ H &\leftarrow \lfloor (30.6001 \times (C+1)) \\ I &\leftarrow F + G + H + dia + 5 \\ R &\leftarrow I \ mod \ 7 \end{split}
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

dia / /	
A ←	$F \leftarrow$
B ←	$G \leftarrow$
C ←	$H \leftarrow$
D ←	$I \leftarrow$
E ←	$R \leftarrow$
como $R = $, o dia em qu	iestão é

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:  \begin{array}{l} A \leftarrow ano \ mod \ 19 \\ B \leftarrow \lfloor (ano \div 100) \\ C \leftarrow ano \ mod \ 100 \\ D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \ mod \ 4 \\ F \leftarrow \lfloor (B+8) \div 25 \\ G \leftarrow \lfloor (1+B-F) \div 3 \end{array}
```

 $\begin{array}{l} I & (D + O) \cdot 2B \\ G \leftarrow \left[(1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30 \\ I \leftarrow \left[(C \div 4) \\ K \leftarrow C \ mod \ 4 \\ L \leftarrow (32 + (2 \times E) + (2 \times I) - (H+K)) \ mod \ 7 \\ M \leftarrow \left[((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \left[((H+L+114 - (7 \times M)) \div 31) \\ Q \leftarrow (H+L+114 - (7 \times M)) \ mod \ 31 \\ \end{array} \right]$

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam

```
BISSERTO A regra do bisserto pode ser assim deserva. Sejam R4 \leftarrow resto da divisão do ano por 4 R100 \leftarrow resto da divisão do ano por 100 e R400 \leftarrow resto da divisão do ano por 400. SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.
```

SE $A=0 \land ((R100 \neq 0) \lor (R400 = 0))$ o ano e bissexto senao nao e. Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
         \dotsé bissexto
 3: senão
 4:
         se (ANO mod 100) = 0
 5:
            ... NÃO é bissexto
 6:
         senão
 7:
            se (ANO mod 4) = 0
                ...é bissexto
 9:
10:
                NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
         \operatorname{fim}\{\operatorname{se}\}
13: fim\{se\}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos

Opter	a quantidade de dias por mes.										
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos N $ilde{A}O$ bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

пса:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? 181+25=206° dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia $10/{\rm abr}$.

Qual o duocentésimo dia ? É um dia de julho, pois 181 < 200 < 212. então, 181 + d=200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

receponda, quar o dia correspondente de ordinar.						
178°						
242°						
243°						
244°						

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	$Q \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC}) \underline{\hspace{1cm}}$

E, com isso, o Carnaval é dia _____/ _____, a Sexta Santa é _____/ _____.

- * Calcule dia da semana do dia 4/12/1726 e informe: $(0=\mathrm{sab},\,1=\mathrm{dom},...6=\mathrm{sex}):$
- * Calcule o Carnaval de 1726 _____/ ____
- * Corpus-Christi de 1726 _____/ _____/
- * Calcule dia da semana do dia 15/12/1700 e informe: (0=sab, 1=dom,...6=sex) : ______
- * Calcule o Carnaval de ~1700 _____/ _____/

102-70577 - 28/08

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70584 19HEQ102 Ex: 5 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

FILIPE LAZZARI PACHECO ____/___/__

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10)
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                            G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                            R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados 1: se (ANO mod 400) = 0 2: ... é bissexto 3: senão se (ANO mod 100) = 0 4:

```
5:
              ... NÃO é bissexto
 6:
          senão
              se (ANO mod 4) = 0
 7:
                  ...é bissexto
 9:
10:
                  NÃO é bissexto
              \operatorname{fim}\{\operatorname{se}\}
11:
12:
          \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	iuu u	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243^{o}	
244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
$\mathbf{C} \leftarrow \underline{\hspace{1cm}}$	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	Q ←
F ←	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	$\operatorname{ord}(\operatorname{Carn})$
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC})$

_____ , a Sexta Santa é

- Calcule dia da semana do dia 15/12/2242e informe: (0=sab, 1=dom,...6=sex):

- 1/1724e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de 1724 _____/ ____
- puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70591 19HEQ102 Ex: 6 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

FLAVIA ALVES PRATES

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda. R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

dia / /		
A ←	F ←	
B ←	G ←	
C ←	H ←	
D ←	I ←	
E ←	R ←	
como $R = \underline{\hspace{1cm}}$, o	dia em questão é	

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

Dado um ano com quatro digitos (maior que 1587), a Páscoa é: $A \leftarrow ano \ mod \ 19$ $B \leftarrow \lfloor (ano \div 100)$ $C \leftarrow ano \ mod \ 100$ $\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}$ $F \leftarrow \lfloor (B+8) \div 25$ $G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30$ $I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4$ $\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}$ $Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31$

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam

```
R4 \leftarrow resto da divisão do ano por 4
R100 \leftarrowresto da divisão do ano por 100 e
\mathrm{R400} \leftarrow \mathrm{resto}da divisão do ano por 400.
```

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
         \dotsé bissexto
 3: senão
 4:
         se (ANO mod 100) = 0
 5:
            ... NÃO é bissexto
 6:
         senão
            se (ANO mod 4) = 0
 7:
                ...é bissexto
 9:
10:
                NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
         \operatorname{fim}\{\operatorname{se}\}
13: fim\{se\}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês

00001	a quarrer	icicic ci	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

	recoponida, quar o ara co	rrespondence de cramar.
ĺ	178°	
ĺ	242^{o}	
	243°	
ĺ	244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$Q \leftarrow \underline{\hspace{1cm}}$
F ←	ord(Páscoa)
G ←	ord(Carn)
H ←	ord(SexSan)
I ←	ord(CC)

____ , a Sexta Santa é E, com isso, o Carnaval é dia _ / _____ e Corpus Christi é ____

- Calcule dia da semana do dia 13/ 2/1656e informe: $(0=sab, 1=dom, \dots 6=sex)$:
- * Calcule o Carnaval de ~1656 ______/ _____
- * Corpus-Christi de 1656 _____ / ____ * Calcule dia da semana do dia 8/12/2334informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de 2334 _____/ ___
- * Corpus-Christi de 2334 _ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70603 19HEQ102 Ex: 7 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

FLAVIO PERELLES FILHO

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

dia / /	
A ←	F ←
B ←	$G \leftarrow$
C ←	H ←
D ←	Ι ←
E ←	$R \leftarrow$
como $R = \underline{\hspace{1cm}}$, o dia em o	questão é

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4

 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        \dotsé bissexto
 3: senão
 4:
        se (ANO mod 100) = 0
 5:
            ... NÃO é bissexto
 6:
        senão
 7:
            se (ANO mod 4) = 0
                ...é bissexto
 9:
10:
                NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos

obter a quantidade de dias por mes.											
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$Q \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
G ←	ord(Carn)
H ←	$\operatorname{ord}(\operatorname{SexSan}) \ \underline{\hspace{1cm}}$
I ←	ord(CC)

____ , a Sexta Santa é E, com isso, o Carnaval é dia / _____e Corpus Christi é

- Calcule dia da semana do dia 6/12/2170e informe: $(0=sab,\ 1=dom,...6=sex):$
- * Calcule o Carnaval de 2170 _____/ _____/
- * Corpus-Christi de 2170 _____ / ____ * Calcule dia da semana do dia 6/12/2220informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~2220 _____/ ____
- * Corpus-Christi de 2220 _ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70610 19HEQ102 Ex: 8 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

GABRIEL LISBOA KOSINSKI

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10)
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                           G \leftarrow
                                           H ←
  D \leftarrow \underline{\hspace{1cm}}
                                           R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos

obter a quantituade de dias por mes.											
J	F	M	A	M	J	J	A	S	O	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos $N\tilde{A}O$ bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243^{o}	
244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
$H \leftarrow \underline{\hspace{1cm}}$	ord(SexSan)
I ←	ord(CC)

____ , a Sexta Santa é E, com isso, o Carnaval é dia com isso, o Carnaval é dia ____/___ _/ ___ e Corpus Christi é ____/ __

- 2/1774Calcule dia da semana do dia 4/ e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 1774 _____/ _____/
- 5/2156e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~2156 _____/ _____/
- puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?


```
UFPR UP UTFPR PUCPr 05/08/2019 - 13:43:42.2 Prof Dr P Kantek (Pkantek@up.edu.br) Algoritmos de Calendário VIVO031a V: 3.28 GUILHERMINA FERNANDA C. MORAES 19HEQ102 Ex: 9 apos 28/08, 50% / /
```

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e jesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o $Canon\ Paschalis$ devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
\begin{split} A &\leftarrow \lfloor ((12-mes) \div 10) \\ B &\leftarrow ano - A \\ C &\leftarrow mes + (12 \times A) \\ D &\leftarrow \lfloor (B \div 100) \\ E &\leftarrow \lfloor (D \div 4) \\ F &\leftarrow E + 2 - D \\ G &\leftarrow \lfloor (365.25 \times B) \\ H &\leftarrow \lfloor (30.6001 \times (C+1)) \\ I &\leftarrow F + G + H + dia + 5 \\ R &\leftarrow I \ mod \ 7 \end{split}
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

dia	//_		
$\mathbf{A}_{i} \leftarrow$		$\mathbf{F} \leftarrow$	
		$\mathbf{G} \leftarrow$	
$\mathbf{C} \leftarrow$		H ←	
$\mathbf{D} \leftarrow$		$I \leftarrow$	
$\mathbf{E} \leftarrow$		$\mathbf{R} \leftarrow$	
como F	R =, o dia	em questão é	·

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
\begin{array}{l} \text{Dado um ano com quatro digitos (maior que 1587), a Páscoa \'e:} \\ A \leftarrow ano \ mod \ 19 \\ B \leftarrow \lfloor (ano \div 100) \\ C \leftarrow ano \ mod \ 100 \\ D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \ mod \ 4 \\ F \leftarrow \lfloor (B+8) \div 25 \\ G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30 \\ I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \ mod \ 4 \\ L \leftarrow (32 + (2 \times E) + (2 \times I) - (H+K)) \ mod \ 7 \\ M \leftarrow \lfloor ((H+L+114 - (7 \times M)) \div 31) \\ Q \leftarrow (H+L+114 - (7 \times M)) \ mod \ 31 \\ \end{array}
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam R4 ← resto da divisão do ano por 4 R100 ← resto da divisão do ano por 100 e

R400 ← resto da divisão do ano por 400. SE R4=0 ∧ ((R100 ≠ 0) ∨ (R400 = 0)) o ano é bissexto senão não é.

```
Outra maneira de descrever o algoritmo é usando SEs encadeados

1: se (ANO mod 400) = 0

2: ... é bissexto
```

```
3: senão
 4:
         se (ANO mod 100) = 0
 5:
             ... NÃO é bissexto
 6:
         senão
 7:
             se (ANO mod 4) = 0
                 ...é bissexto
 9:
10:
                 NÃO é bissexto
             \operatorname{fim}\{\operatorname{se}\}
11:
12:
         \operatorname{fim}\{\operatorname{se}\}
13: fim\{se\}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	iuu u	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos N $ilde{A}O$ bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? 181+25=206° dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia $10/{\rm abr}$.

Qual o duocentésimo dia ? É um dia de julho, pois 181 < 200 < 212. então, 181 + d=200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	L ←
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	Q ←
F ←	ord(Páscoa)
G ←	ord(Carn)
H ←	ord(SexSan)
I ←	ord(CC)

E, com isso, o Carnaval é dia _____/ _____, a Sexta Santa é _____/ _____.

- * Calcule dia da semana do dia 17/5/2156 e informe: $(0=\mathrm{sab},\,1=\mathrm{dom},...6=\mathrm{sex})$: ______
- * Calcule o Carnaval de ~2156 _____/ ____
- * Corpus-Christi de ~2156 _____/ _____/
- * Calcule dia da semana do dia 25/3/2308 e informe: $(0=\mathrm{sab},\,1=\mathrm{dom},...6=\mathrm{sex})$: ______
- * Calcule o Carnaval de 2308 _____/ _____/
- * Corpus-Christi de 2308 _____/ _____ / ______ / ________ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

102-70627 - 28/08

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70634 19HEQ102 Ex: 10 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

ISABELLA DO ROSARIO

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda. R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

dia	/ /		
A ←		$F \leftarrow$	
B ←		$\mathbf{G} \leftarrow$	
C ←		$H \leftarrow$	
D ←		$I \leftarrow$	
E ←		$\mathbf{R} \leftarrow$	
como $R =$, o dia	a em questão é	<u> </u>

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4

 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
 4:
        se (ANO mod 100) = 0
 5:
            ... NÃO é bissexto
 6:
        senão
 7:
            se (ANO mod 4) = 0
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês

ODUCI	beer a quantique de dias per mes.										
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	Q ←
F ←	ord(Páscoa)
G ←	ord(Carn)
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC})$

____ , a Sexta Santa é E, com isso, o Carnaval é dia / _____e Corpus Christi é

- Calcule dia da semana do dia 4/12/1780e informe: $(0=sab,\ 1=dom,...6=sex):$
- * Calcule o Carnaval de 1780 _____/ _____/
- * Corpus-Christi de 1780 _____ / ____ * Calcule dia da semana do dia 1/10/2164informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~2164 _____/ ____
- puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70641 19HEO102 Ex: 11 apos 28/08, 50% 05/08/2019 - 13:43:42.2 Algoritmos de Calendário

JOAO CARLOS BORSATO

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e jesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o $Canon\ Paschalis$ devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
\begin{split} A &\leftarrow \lfloor ((12-mes) \div 10) \\ B &\leftarrow ano - A \\ C &\leftarrow mes + (12 \times A) \\ D &\leftarrow \lfloor (B \div 100) \\ E &\leftarrow \lfloor (D \div 4) \\ F &\leftarrow E + 2 - D \\ G &\leftarrow \lfloor (365.25 \times B) \\ H &\leftarrow \lfloor (30.6001 \times (C+1)) \\ I &\leftarrow F + G + H + dia + 5 \\ R &\leftarrow I \ mod \ 7 \end{split}
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

dia / /		
A ←	$\mathbf{F} \leftarrow$	
B ←	$G \leftarrow$	
C ←	$\mathbf{H} \leftarrow$	
$\mathbf{D} \leftarrow \underline{\hspace{1cm}}$	$I \leftarrow$	
E ←	$\mathbf{R} \leftarrow$	
como $R =,$ o dia	a em questão é _	<u> </u>

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
\begin{array}{l} \text{Dado um ano com quatro digitos (maior que 1587), a Páscoa \'e:} \\ A \leftarrow ano \ mod \ 19 \\ B \leftarrow \lfloor (ano \div 100) \\ C \leftarrow ano \ mod \ 100 \\ D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \ mod \ 4 \\ F \leftarrow \lfloor (B+8) \div 25 \\ G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30 \\ I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \ mod \ 4 \\ L \leftarrow (32 + (2 \times E) + (2 \times I) - (H+K)) \ mod \ 7 \\ M \leftarrow \lfloor ((M+(11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H+L+114-(7 \times M)) \div 31) \\ Q \leftarrow (H+L+114-(7 \times M)) \ mod \ 31 \\ \end{array}
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam R4 ← resto da divisão do ano por 4 R100 ← resto da divisão do ano por 100 e R400 ← resto da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

1: se (ANO mod 400) = 0

2: ... é bissexto

3: señão

4: se (ANO mod 100) = 0

4: se (ANO mod 100) = 0 5: ... NÃO é bissexto 6: senão 7: se (ANO mod 4) = 0 ...é bissexto 9: 10: NÃO é bissexto $\operatorname{fim}\{\operatorname{se}\}$ 11: 12: $\operatorname{fim}\{\operatorname{se}\}$ 13: $fim\{se\}$

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos N $ilde{A}O$ bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? 181+25=206° dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia $10/{\rm abr}$.

Qual o duocentésimo dia ? É um dia de julho, pois 181 < 200 < 212. então, 181 + d=200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

	recoponida, quar o ara co	rrespondence de cramar.
ĺ	178°	
ĺ	242^{o}	
	243°	
ĺ	244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	L ←
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
$E \leftarrow ___$	Q ←
F ←	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	ord(SexSan)
Ι ←	ord(CC)

E, com isso, o Carnaval é dia _____/ _____, a Sexta Santa é _____/ _____.

Para você fazer

- * Calcule dia da semana do dia 14/ 6/1688 e informe: $(0=\mathrm{sab},\,1=\mathrm{dom},...6=\mathrm{sex})$: ______
- * Calcule o Carnaval de ~1688 _____/ _____
- * Corpus-Christi de ~1688 _____/ _____/
- * Calcule dia da semana do dia 19/5/2224 e informe: (0=sab, 1=dom,...6=sex) : ______
- * Calcule o Carnaval de ~2224 _____/ _____/

* Corpus-Christi de 2224 ____/ ____ / ____ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

102-70641 - 28/08

```
UFPR UP UTFPR PUCPr
                                             05/08/2019 - 13:43:42.2
Prof Dr P Kantek (Pkantek@up.edu.br)
                                            Algoritmos de Calendário
VIVO031a V: 3.28
                                 JOSE PAULO DE OLIVEIRA NETO
70658
```

Cálculo do dia da semana

19HEQ102 Ex: 12 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10)
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                           G \leftarrow
                                           H ←
  D \leftarrow \underline{\hspace{1cm}}
                                           R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

obter a quantitude de dido por mes.											
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

recoponad, quar o ara co	orrespondence de ordinar.
178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	L ←
C ←	M ←
D ←	P ←
E ←	Q ←
F ←	ord(Páscoa)
G ←	$\operatorname{ord}(\operatorname{Carn})$
H ←	$\operatorname{ord}(\operatorname{SexSan})$
I ←	$\operatorname{ord}(\operatorname{CC})$

______e Corpus Christi é ______/ _____, a Sexta Santa é E, com isso, o Carnaval é dia

- Calcule dia da semana do dia 19/ 7/2186e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~2186 _____/ _____/
- * Corpus-Christi de 2186 _____ / ____ * Calcule dia da semana do dia 4/12/2392informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~2392 _____/ _____/
- * Corpus-Christi de 2392 _ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70665 19HEQ102 Ex: 13 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

JULIANA HIROMI SUMI

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                            G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                            R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e

 $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400. SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados 1: se (ANO mod 400) = 0

```
2:
         ... é bissexto
 3: senão
         se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
         senão
            se (ANO mod 4) = 0
 7:
                ...é bissexto
 9:
10:
                NÃO é bissexto
             \operatorname{fim}\{\operatorname{se}\}
11:
12:
         \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

ODUCI	obter a quantiquade de dias por mes.										
J	F	M	A	M	J	J	A	S	O	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
$\mathbf{C} \leftarrow \underline{\hspace{1cm}}$	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	Q ←
F ←	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	$\operatorname{ord}(\operatorname{Carn})$
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC})$

____ , a Sexta Santa é E, com isso, o Carnaval é dia com isso, o Carnaval é dia ____/___ _/ ___ e Corpus Christi é ____/__

- Calcule dia da semana do dia 15/9/1660e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~1660 ______/ _____
- * Corpus-Christi de 1660 ______ / _____ / _____ * Calcule dia da semana do dia 25/ 4/1778e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 1778 _____/ ____
- puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70672 19HEQ102 Ex: 14 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

LEONARDO CHAVES

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e jesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
____/ ____/ __
  A \leftarrow
                                       G \leftarrow
                                       H ←
  D \leftarrow \underline{\hspace{1cm}}
                                       R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

Dado um ano com quatro digitos (maior que 1587), a Páscoa é: $A \leftarrow ano \ mod \ 19$ $B \leftarrow \lfloor (ano \div 100)$ $C \leftarrow ano \ mod \ 100$ $\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}$ $F \leftarrow \lfloor (B+8) \div 25$ $G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30$ $I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4$ $\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}$

 $Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31$ A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam

```
R4 \leftarrow resto da divisão do ano por 4
R100 \leftarrowresto da divisão do ano por 100 e
\mathrm{R400} \leftarrow \mathrm{resto}da divisão do ano por 400.
SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.
```

Outra maneira de descrever o algoritmo é usando SEs encadea-

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

dos

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos

obter a quantidade de dias por mes.											
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

пса:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
$\mathbf{C} \leftarrow \underline{\hspace{1cm}}$	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	Q ←
F ←	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	$\operatorname{ord}(\operatorname{Carn})$
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC})$

E, com isso, o Carnaval é dia ____ , a Sexta Santa é com isso, o Carnaval é dia _____/ ____ e Corpus Christi é _____/ ___

- Calcule dia da semana do dia 4/6/2304e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~2304 _____/ _____/
- * Corpus-Christi de 2304 _____ / ___ * Calcule dia da semana do dia 4/11/1880informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~1880 _____/ _____/
- * Corpus-Christi de 1880 _ * Corpus-Christi de 100U _____/ ____ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

LEONARDO MARQUES CAMILO

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 15 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                            G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                            R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
```

 $Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31$ A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam

```
R4 \leftarrow resto da divisão do ano por 4
R100 \leftarrowresto da divisão do ano por 100 e
\mathrm{R400} \leftarrow \mathrm{resto}da divisão do ano por 400.
SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.
```

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês

00001	a quarrer	iuu u	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
$E \leftarrow \underline{\hspace{1cm}}$	$Q \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC}) \underline{\hspace{1cm}}$

____ , a Sexta Santa é E, com isso, o Carnaval é dia ______e Corpus Christi é ______/___

- Calcule dia da semana do dia 7/5/1602e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~1602 _____/ _____/
- * Corpus-Christi de 1602 _____ / _____ / _____ * Calcule dia da semana do dia 7/3/1806 e informe: (0=sab, 1=dom,...6=sex) :
- * Calcule o Carnaval de ~1806 _____ / ____
- * Corpus-Christi de 1806 _ * Corpus-Christi de 1800 _____/ _____ / ______ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?


```
UFPR UP UTFPR PUCPr
                                            05/08/2019 - 13:43:42.2
Prof Dr P Kantek (Pkantek@up.edu.br)
                                           Algoritmos de Calendário
VIVO031a V: 3.28
                           MARCELO EDUARDO MARQUES RIBAS
70696
19HEQ102 Ex: 16 apos 28/08, 50%
```

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                           G \leftarrow
                                           H ←
  D \leftarrow \underline{\hspace{1cm}}
                                           R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4

 $R100 \leftarrow$ resto da divisão do ano por 100 e

 $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	icicic ci	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

recoponad, quar o ara co	orrespondence de ordinar.
178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
G ←	$\operatorname{ord}(\operatorname{Carn})$
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC}) \ \underline{\hspace{1cm}}$

______e Corpus Christi é ______/ _____, a Sexta Santa é E, com isso, o Carnaval é dia

- Calcule dia da semana do dia 29/7/1864e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~1864 _____/ _____/
- * Corpus-Christi de 1864 ______/ _____ * Calcule dia da semana do dia 23/12/2122e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~2122 _____/ _____/
- * Corpus-Christi de 2122 _ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

MARIA CLARA DINIZ ALMEIDA ____/___/__

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 17 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                            G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                            R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

Dado um ano com quatro digitos (maior que 1587), a Páscoa é: $A \leftarrow ano \ mod \ 19$ $B \leftarrow \lfloor (ano \div 100)$ $C \leftarrow ano \ mod \ 100$

 $\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}$ $F \leftarrow \lfloor (B+8) \div 25$ $G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30$ $I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4$ $\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}$ $Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31$

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam

 $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400. SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadea-

dos 1: se (ANO mod 400) = 0 2: ... é bissexto 3: senão se (ANO mod 100) = 0 4: 5: ... NÃO é bissexto 6: senão se (ANO mod 4) = 07:

...é bissexto 9: 10: NÃO é bissexto $\operatorname{fim}\{\operatorname{se}\}$ 11: 12: $\operatorname{fim}\{\operatorname{se}\}$ 13: fim{se}

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos

obter a quantidade de dias por mes.											
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

recoponad, quar o ana oc	orrespondence de ordinar.
178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$Q \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	ord(SexSan)
I ←	ord(CC)

E, com isso, o Carnaval é dia ____ , a Sexta Santa é com isso, o Carnaval é dia ____/___ _/ ___ e Corpus Christi é ____/__

- 2/2208Calcule dia da semana do dia 14/e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 2208 _____/ _____/
- * Corpus-Christi de 2208 _____ / _____ / _____ * Calcule dia da semana do dia 13/ 1/1790e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de 1790 _____/ ____
- * Corpus-Christi de 1790 _ puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?


```
UFPR UP UTFPR PUCPr
                                            05/08/2019 - 13:43:42.2
Prof Dr P Kantek (Pkantek@up.edu.br)
                                           Algoritmos de Calendário
VIVO031a V: 3.28
                                 MARYNA BORNEMANN DA SILVA
```

Cálculo do dia da semana

19HEQ102 Ex: 18 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
____/ ____/ __
  A \leftarrow
                                       G \leftarrow
                                       H ←
  D \leftarrow \underline{\hspace{1cm}}
                                       R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadea-

```
dos
 1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	iuu u	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	$Q \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC}) \ \underline{\hspace{1cm}}$

____ , a Sexta Santa é E, com isso, o Carnaval é dia

- 3/2122Calcule dia da semana do dia 18/ e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de 2122 _____/ _____/
- * Corpus-Christi de 2122 _____ / ____ * Calcule dia da semana do dia 5/ 4/1766e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~1766 _____/ _____/
- puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70722 19HEQ102 Ex: 19 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

MATEUS DE MATOS LEME

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                            G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                            R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e

 $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400. SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

```
Outra maneira de descrever o algoritmo é usando SEs encadea-
dos
1: se (ANO mod 400) = 0
2:
     ... é bissexto
3: senão
     se (ANO mod 100) = 0
4:
5:
```

```
... NÃO é bissexto
 6:
          senão
              se (ANO mod 4) = 0
 7:
                  ...é bissexto
 9:
10:
                  NÃO é bissexto
              \operatorname{fim}\{\operatorname{se}\}
11:
12:
          \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

ODUCI	a quarrere	raac a	c arab	POI I	iico.						
J	F	M	A	M	J	J	A	S	O	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. $\dot{\rm Fica}$ por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

пса:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

	recoponda, quai o dia ce	rrespondente do ordinar.
ĺ	178°	
ĺ	242°	
	243°	
ĺ	244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$Q \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
G ←	$\operatorname{ord}(\operatorname{Carn})$
H ←	ord(SexSan)
I ←	ord(CC)

____ , a Sexta Santa é E, com isso, o Carnaval é dia com isso, o Carnaval é dia ____/___ _/ ___ e Corpus Christi é ____/__

- Calcule dia da semana do dia 27/ 1/1864 e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~1864 ______/ _____
- * Corpus-Christi de 1864 _____ / ____ / ____ * Calcule dia da semana do dia 30/ 4/2394e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~2394 _____/ ____
- * Corpus-Christi de 2394 _ * Corpus-Christi de 2594 _____/ ____ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

UFPR UP UTFPR PUCPr Prof Dr P Kantek (Pkantek@up.edu.br) VIVO031a V: 3.28 70739 19HEQ102 Ex: 20 apos 28/08, 50%

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

MAYARA MATEUS ROSA

Algoritmos de Calendário

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda. R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

dia / /		
A ←	$F \leftarrow$	
B ←	$G \leftarrow$	
C ←	$\mathbf{H} \leftarrow$	
D ←	$I \leftarrow$	
$E \leftarrow \underline{\hspace{1cm}}$	$\mathbf{R} \leftarrow$	
como $R = \underline{\hspace{1cm}}$, o dia	a em questão é	

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

Dado um ano com quatro digitos (maior que 1587), a Páscoa é: $A \leftarrow ano \ mod \ 19$ $B \leftarrow \lfloor (ano \div 100)$ $C \leftarrow ano \ mod \ 100$ $\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}$ $F \leftarrow \lfloor (B+8) \div 25$ $G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30$ $I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4$ $\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}$ $Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31$

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4

 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados 1: se (ANO mod 400) = 0

```
2:
         ... é bissexto
 3: senão
 4:
         se (ANO mod 100) = 0
 5:
            ... NÃO é bissexto
 6:
         senão
            se (ANO mod 4) = 0
 7:
                ...é bissexto
 9:
10:
                NÃO é bissexto
             \operatorname{fim}\{\operatorname{se}\}
11:
12:
         \operatorname{fim}\{\operatorname{se}\}
13: fim\{se\}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês

ODUCI	a quantic	raac a	c arab	POI I	iico.						
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	M ←
D ←	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
F ←	ord(Páscoa)
G ←	ord(Carn)
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC})$

E, com isso, o Carnaval é dia ____ , a Sexta Santa é _ / _____ e Corpus Christi é ____

- 2/1798Calcule dia da semana do dia 15/e informe: $(0=sab, 1=dom, \dots 6=sex)$:
- * Calcule o Carnaval de 1798 _____/ _____/
- * Corpus-Christi de 1798 _____ / ____ / ____ * Calcule dia da semana do dia 31/7/1786e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de ~1786 ______/ _____
- * Corpus-Christi de 1786 _ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

05/08/2019 - 13:43:42.2Algoritmos de Calendário

PHILLIP YAGYU MORIBAYASHI

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 21 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e jesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o $Canon\ Paschalis$ devido a Victorius de Aquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
\begin{split} A &\leftarrow \lfloor ((12-mes) \div 10) \\ B &\leftarrow ano - A \\ C &\leftarrow mes + (12 \times A) \\ D &\leftarrow \lfloor (B \div 100) \\ E &\leftarrow \lfloor (D \div 4) \\ F &\leftarrow E + 2 - D \\ G &\leftarrow \lfloor (365.25 \times B) \\ H &\leftarrow \lfloor (30.6001 \times (C+1)) \\ I &\leftarrow F + G + H + dia + 5 \\ R &\leftarrow I \ mod \ 7 \end{split}
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
dia ___ / ___ / ___ 

A ← ___ F ← 

B ← ___ G ← 

C ← __ H ← 

D ← ___ I ← 

E ← ___ R ← 

como R = ___ , o dia em questão é ____.
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terça de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é: A \leftarrow ano \ mod \ 19 B \leftarrow \lfloor (ano \div 100) \\ C \leftarrow ano \ mod \ 100 C \leftarrow ano \ mod \ 100 D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \ mod \ 4 F \leftarrow \lfloor (B+8) \div 25 G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30 I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \ mod \ 4 L \leftarrow (32 + (2 \times E) + (2 \times I) - (H+K)) \ mod \ 7 M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H+L+114 - (7 \times M)) \ mod \ 31) Q \leftarrow (H+L+114 - (7 \times M)) \ mod \ 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam R4 ← resto da divisão do ano por 4 R100 ← resto da divisão do ano por 100 e

R400 ← resto da divisão do ano por 400. SE R4=0 ∧ ((R100 \neq 0) ∨ (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

1: se (ANO mod 400) = 0

2: ... é bissexto

3: senão

4: se (ANO mod 100) = 0

```
se (ANO mod 100) = 0
 4:
 5:
             ... NÃO é bissexto
 6:
         senão
             se (ANO mod 4) = 0
 7:
                 ...é bissexto
 9:
10:
                 NÃO é bissexto
             \operatorname{fim}\{\operatorname{se}\}
11:
12:
         \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	iuu u	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia $10/{\rm abr}$.

Qual o duocentésimo dia ? É um dia de julho, pois 181 < 200 < 212. então, 181 + d=200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
$\mathbf{C} \leftarrow \underline{\hspace{1cm}}$	$M \leftarrow \underline{\hspace{1cm}}$
D ←	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	ord(SexSan)
I ←	ord(CC)

E, com isso, o Carnaval é dia _____/_____, a Sexta Santa é _____/________.

Para você fazer

- * Calcule dia da semana do dia 1/5/2234 e informe: $(0=\mathrm{sab},\ 1=\mathrm{dom},...6=\mathrm{sex}):$
- * Calcule o Carnaval de 2234 _____/ _____
- * Corpus-Christi de ~2234 _____/ ____/
- * Calcule dia da semana do dia 6/3/2190 e informe: (0=sab, 1=dom,...6=sex) : ______
- * Calcule o Carnaval de 2190 _____/ _____

102-70746 - 28/08

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

RAFAELA BORIN OLSEMANN ____/___/__

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 22 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                          G \leftarrow
                                          H ←
  D \leftarrow \underline{\hspace{1cm}}
                                          R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
```

 $Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31$ A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam

```
R4 \leftarrow resto da divisão do ano por 4
R100 \leftarrowresto da divisão do ano por 100 e
\mathrm{R400} \leftarrow \mathrm{resto}da divisão do ano por 400.
SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.
```

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	icicic ci	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	
C ←	
D ←	
E ←	
F ←	
G ←	ord(Carn)
H ←	
I ←	ord(CC)

____ , a Sexta Santa é E, com isso, o Carnaval é dia

- Calcule dia da semana do dia 4/3/1622e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~1622 _____/ _____/
- * Corpus-Christi de 1622 _____ / ____ * Calcule dia da semana do dia 3/10/1824informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de ~1824 _____/ ____
- puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?


```
UFPR UP UTFPR PUCPr
                                             05/08/2019 - 13:43:42.2
Prof Dr P Kantek (Pkantek@up.edu.br)
                                            Algoritmos de Calendário
VIVO031a V: 3.28
                                 RODRIGO ENZO V. SCHWITZNER
70760
19HEQ102 Ex: 23 apos 28/08, 50%
```

Cálculo do dia da semana

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                           G \leftarrow
                                           H ←
  D \leftarrow \underline{\hspace{1cm}}
                                           R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4

 $R100 \leftarrow$ resto da divisão do ano por 100 e

 $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	icicic ci	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

	responde, quar o dia correspondente de ordinar.							
ĺ	178°							
ĺ	242^{o}							
	243°							
ĺ	244^{o}							

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
$\mathbf{C} \leftarrow \underline{\hspace{1cm}}$	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	Q ←
F ←	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	$\operatorname{ord}(\operatorname{Carn})$
H ←	ord(SexSan)
I ←	$\operatorname{ord}(\operatorname{CC})$

____ , a Sexta Santa é E, com isso, o Carnaval é dia

Para você fazer

- Calcule dia da semana do dia 4/11/2222e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 2222 _____/ _____/
- e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 1780 _____/ ____
- * Corpus-Christi de 1780 _

puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

VINICIUS GABRIEL DE AQUINO

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 24 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                            G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                            R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e

 $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	iuu u	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244^{o}	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
$E \leftarrow \underline{\hspace{1cm}}$	Q ←
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	$\operatorname{ord}(\operatorname{SexSan})$
I ←	ord(CC)

_____ , a Sexta Santa é E, com isso, o Carnaval é dia com isso, o Carnaval é dia ____/___ _/ ___ e Corpus Christi é ____/__

- Calcule dia da semana do dia 23/ 1/1880e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 1880 _____/ _____/
- * Corpus-Christi de 1880 _____ / ____ * Calcule dia da semana do dia 9/12/1880informe: $(0=sab,\ 1=dom,...6=sex)$:
- * Calcule o Carnaval de ~1880 _____/ ____
- * Corpus-Christi de 1880 _ * Corpus-Christi de 1880 _____/ _____/ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

VINICIUS RICARDO NUNES

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 25 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
A \leftarrow
                                            G \leftarrow
  D \leftarrow \underline{\hspace{1cm}}
                                            R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400. SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é.

Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

00001	a quarrer	iuu u	o areas	POI I							
J	F	M	A	M	J	J	A	S	О	N	D
31	28/29	31	30	31	30	31	31	30	31	30	31

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica:											
J	F	M	A	M	J	J	A	S	О	N	D
31	28	31	30	31	30	31	31	30	31	30	31
0	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	$K \leftarrow \underline{\hspace{1cm}}$
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
$F \leftarrow \underline{\hspace{1cm}}$	ord(Páscoa)
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	ord(SexSan)
I ←	ord(CC)

_____ , a Sexta Santa é E, com isso, o Carnaval é dia

- 2/1786Calcule dia da semana do dia 20/e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 1786 _____/ _____/
- * Corpus-Christi de 1786 _____ / _____ / _____ * Calcule dia da semana do dia 20/ 6/2190e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de 2190 _____/ _____/
- * Corpus-Christi de 2190 _ * Corpus-Christi de 2190 _____ / ____ Uma curiosidade: Notada por Martin Gardner (The Colossal Book of short puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

05/08/2019 - 13:43:42.2 Algoritmos de Calendário

VINICIUS SILVEIRA MALESKI ____/___/__

Algoritmos de Calendário

Cálculo do dia da semana

19HEQ102 Ex: 26 apos 28/08, 50%

O algoritmo seguinte é devido ao astrônomo napolitano Aloysius Lilius e ao matemático alemão e iesuita Cristopher Clavius. Escrito no século XVI é usado pelas igrejas ocidentais para calcular o dia do domingo de Páscoa. Existiram outros algoritmos antes deste. Por exemplo o Canon Paschalis devido a Victorius de Âquitania escrito em cerca de 450 a.C.

Dada uma data no formato dia, mes, ano (onde ano > 1587), calcula-se o dia da semana usando a seguinte formulação:

```
A \leftarrow \lfloor ((12 - mes) \div 10) \rfloor
 B \leftarrow ano - A
 C \leftarrow mes + (12 \times A)
 D \leftarrow \lfloor (B \div 100) \rfloor
 E \leftarrow (D \div 4)
 F \leftarrow \stackrel{\leftarrow}{E} + 2 - D
 F \leftarrow E + 2 - D 
 G \leftarrow \lfloor (365.25 \times B) \\
 H \leftarrow \lfloor (30.6001 \times (C+1)) \\
 I \leftarrow F + G + H + dia + 5 \\
 R \leftarrow I \ mod \ 7
```

Se R=0, dia, mes, ano é sábado, R=1 é domingo, R=2 é segunda, R=3 é terça R=4 é quarta, R=5 é quinta e R=6 é sexta-feira.

Exemplo: Calculemos o dia da semana de hoje,

```
____/ ____/ __
  A \leftarrow
                                       G \leftarrow
                                       H ←
  D \leftarrow \underline{\hspace{1cm}}
                                       R. ←
como R = _____, o dia em questão é
```

Cálculo dos feriados móveis

Os 3 feriados móveis (terca de carnaval, sexta feira santa e Corpus Christi) são baseados todos no dia do domingo de Páscoa. Portanto, a primeira coisa a fazer é calcular em que dia cai a Páscoa.

```
Dado um ano com quatro digitos (maior que 1587), a Páscoa é:
 A \leftarrow ano \ mod \ 19
B \leftarrow \lfloor (ano \div 100)
C \leftarrow ano \ mod \ 100
\begin{array}{l} D \leftarrow \lfloor (B \div 4) \\ E \leftarrow B \bmod 4 \end{array}
F \leftarrow \lfloor (B+8) \div 25
G \leftarrow \lfloor (1+B-F) \div 3 \\ H \leftarrow ((19 \times A) + B + 15 - (D+G)) \ mod \ 30
I \leftarrow \lfloor (C \div 4) \\ K \leftarrow C \bmod 4
\begin{array}{l} L \leftarrow (32 + (2 \times E) + (2 \times I) - (H + K)) \ mod \ 7 \\ M \leftarrow \lfloor ((A + (11 \times H) + (22 \times L)) \div 451) \\ P \leftarrow \lfloor ((H + L + 114 - (7 \times M)) \div 31) \end{array}
Q \leftarrow (H + L + 114 - (7 \times M)) \mod 31
```

A Páscoa é o dia Q+1 do mês P.

Bissexto A regra do bissexto pode ser assim descrita: sejam $R4 \leftarrow$ resto da divisão do ano por 4 $R100 \leftarrow$ resto da divisão do ano por 100 e $\mathrm{R400} \leftarrow \mathrm{resto}$ da divisão do ano por 400.

SE R4=0 \wedge ((R100 \neq 0) \vee (R400 = 0)) o ano é bissexto senão não é. Outra maneira de descrever o algoritmo é usando SEs encadeados

```
1: se (ANO mod 400) = 0
 2:
        ... é bissexto
 3: senão
        se (ANO mod 100) = 0
 4:
 5:
            ... NÃO é bissexto
 6:
        senão
            se (ANO mod 4) = 0
 7:
               ...é bissexto
 9:
10:
               NÃO é bissexto
            \operatorname{fim}\{\operatorname{se}\}
11:
12:
        \operatorname{fim}\{\operatorname{se}\}
13: fim{se}
```

A chave para calcular os demais feriados móveis (Terça de carnaval, Sexta Feira Santa e Corpus Christi) está em considerar que, conhecida a Páscoa, Carnaval ocorre 47 dias antes, Sexta Santa ocorre 2 dias antes e Corpus Christi, 60 dias depois.

Para aprender a calcular somas e subtrações envolvendo dias, precisamos obter a quantidade de dias por mês:

obter a quantitative de alab per mesi.													
	J	F	M	A	M	J	J	A	S	О	N	D	
	31	28/29	31	30	31	30	31	31	30	31	30	31	ĺ

Vai-se desenvolver aqui apenas o processamento de anos NÃO bissextos. Fica por conta do aluno os ajustes a fazer em anos bissextos.

Somando acumuladamente e deslocando uma posição à direita, o vetor

fica	a:											
J		F	M	A	M	J	J	A	S	О	N	D
	31	28	31	30	31	30	31	31	30	31	30	31
0)	31	59	90	120	151	181	212	243	273	304	334

A última linha, na tabela acima nos ajuda a achar o ordinal de um dia dentro do ano. Por exemplo:

Qual o ordinal do dia 12 de maio ? Olhando a tabela acima que antes do dia 1/mai há 120 dias. Logo o dia 12/maio é o centésimo, trigésimo segundo dia (120+12=132).

Qual o ordinal do dia 25 de julho ? $181+25=206^{\circ}$ dia.

Responda, qual o ordinal de:

05/06	
10/07	
05/08	
15/11	

Já o caminho inverso, também usa a tabela acima. Por exemplo, qual o centésimo dia do ano ? Olhando a tabela percebe-se que é um dia de abril, pois $90 < 100 \le 120$. então, 90 + d = 100, e daí que o centésimo dia é o dia 10/abr.

Qual o duocentésimo dia ? É um dia de julho, pois $181 < 200 \le 212$. então, 181 + d = 200 ou 19/jul.

Responda, qual o dia correspondente ao ordinal:

178°	
242°	
243°	
244°	

Com esse conceito operacional, para calcular os feriados:

- Ache o dia e mês da Páscoa (algoritmo do Lilius e Clavius)
- Descubra se o ano em questão é bissexto
- Monte o vetor de dias acumulados, mês a mês.
- Ache o ordinal correspondente à Páscoa
- Subtraia 47 (Carnaval), 2 (Sexta Santa) e some 60 (Corpus Christi)
- Converta esses ordinais em datas usuais

Exemplo: Vamos calcular as 4 datas do ano de 2019 .

A ←	K ←
B ←	$L \leftarrow \underline{\hspace{1cm}}$
C ←	$M \leftarrow \underline{\hspace{1cm}}$
$D \leftarrow \underline{\hspace{1cm}}$	P ←
E ←	$\mathbf{Q} \leftarrow \underline{\hspace{1cm}}$
F ←	$\operatorname{ord}(\operatorname{P\'{a}scoa})$
$G \leftarrow \underline{\hspace{1cm}}$	ord(Carn)
H ←	$\operatorname{ord}(\operatorname{SexSan})$
I ←	ord(CC)

- Calcule dia da semana do dia 13/11/2132e informe: (0=sab, 1=dom,...6=sex):
- * Calcule o Carnaval de 2132 _____/ _____/
- 6/1718e informe: (0=sab, 1=dom,...6=sex) : _____
- * Calcule o Carnaval de 1718 _____/ _____/
- puzzles & Problems, pág. 63) é que Oct 31 = Nov 27 = Dec 25, ou Halloween = Thanksgiving day = Christmas. Como é possível ?

