Universidade Positivo Sistemas de Informação 11/02/2019 - 12:36:24.6 Algoritmos Prof Dr P Kantek (pkantek@up.edu.br) Prática: 3n+1, Viagem e Editor Gráfico VIVOm42a V: 1.01 Exercício : 1 _____ / ____ / _____ / ______

extraídos de [Ski03] - Programming Challenges, podem ser submetidos à $http:\online-judge.uva.es$.

O problema 3n+1 Considere o seguinte algoritmo para gerar uma sequência de números. Comece com um inteiro n: se n é par, divida-o por 2; se n é ímpar, multiplique-o por 3 e some 1 ao resultado. Repita esse processo para cada novo valor de n, terminando quando n=1. Por exemplo, para n=22 será gerada a seguinte sequência de números:

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Conjectura-se (mas ainda não foi provado) que este algoritmo termina em n=1 para qualquer inteiro n. Sabe-se que essa conjectura se cumpre, pelo menos, para qualquer inteiro até 1.000.000. Para uma entrada n, o comprimento do ciclo de n é a quantidade de números gerados até, e incluindo, o 1. No exemplo anterior, o comprimento do ciclo de 22 é 16. Dados dois números quaisquer, i e j, deve-se determinar o máximo comprimento de ciclo dos números compreendidos entre i e j, incluindo ambos os extremos.

Entrada A entrada contém uma série de pares de inteiros, i e j, sendo um par por linha. Todos os inteiros são menores que 1.000.000 e maiores que 0.

Saída Para cada par de inteiros i e j da entrada, escrever i e j na mesma ordem em que aparecem na entrada, seguidos do máximo comprimento de ciclo dos inteiros compreendidos entre i e j, ambos incluídos. Os três números devem estar separados entre si por um espaço, estando os três na mesma linha e utilizando uma linha na saída para cada linha da entrada.

Exemplos

entrada:	saída:
1 10	1 10 20
100 200	100 200 125
201 210	201 210 89
900 1000	900 1000 174

A viagem

Um grupo de estudantes, membros de um clube, viaja anualmente a diferentes lugares. Eles já foram em Indianápolis, Phoenix, Nashville, Filadélfia, San Jose e Atlanta. Nesta primavera estão planejando uma viagem a Eindhoven

Antes de partir o grupo decidiu dividir igualmente todas as despesas, mas sabem que não é nada prático dividi-las igualmente à medida que ocorrem. Assim, cada um paga por gastos como comida, hotéis, táxis, e bilhetes aéreos. Depois da viagem, calcula-se quanto cada um gastou, e eles trocam dinheiro entre si até que o gasto líquido de cada um seja o mesmo, com diferença máxima de um centavo. No passado, essa troca final de dinheiro acabava sendo tediosa e lenta. Sua tarefa é calcular, a partir da lista de gastos, a quantidade mínima a ser trocada de mãos para equilibrar (a menos de um centavo) os gastos de todos os estudantes.

Entrada A entrada incluirá informações de várias viagens. Cada viagem consiste de uma linha contendo um inteiro positivo n, indicando o número de estudantes na viagem. Em seguida virão n valores, contendo cada uma a quantidade gasta por um estudante, expressa em dólares e centavos de dólar. Em cada viagem não haverá mais que 1.000 estudantes, e nenhum deles gastará mais que US\$ 10.000,00.

Saída Para cada viagem, escreva uma linha indicando a quantidade total de dinheiro, em dólares e centavos, que deve ser trocada para equilibrar os gastos dos estudantes.

Exemplos

entrada	:			saída
3 10.00	20.00	30.00		\$10.00
4 15.00	15.01	3.00	3.01	\$11.99

Editor Gráfico

Os editores gráficos como o Photoshop permitem modificar imagens de mapas de bits, da mesma maneira que os editores de texto permitem modificar documentos. As imagens são representadas em uma matriz de pixels, $M\times N$, onde cada pixel tem uma cor determinada. O objetivo aqui é produzir um programa que simule um editor gráfico interativo simples.

Entrada A entrada consiste em uma seqüência de comandos do editor, um por linha. Cada comando está representado por uma letra maiúscula, colocada como primeiro caracter da linha. Se o comando necessita de parâmetros, eles vêm a seguir separados por um espaço em branco.

As coordenadas dos pixels estão representadas por dois números inteiros, sendo a coluna contida no intervalo 1..Me a linha no intervalo 1..N, onde $1 \leq M, N \leq 250$. A origem está no canto superior esquerdo da tabela e cada cor é representada por uma letra maiúscula.

O	editor	aceita	os	seguintes	com	andos:	
I M N	C	ria uma nova in	nagem de	tamanho $M \times N$	com		
	todos os pixels na cor branca (B).						
С	L	impa toda a ta	bela, pas	sando os pixeis	à cor		
	bı	ranca (B). O tai	nanho nã	o se modifica			
LXY	C pi	nta o pixel $(X,$	Y) com a	cor C			
VXY	1 Y2 de	esenha um segm	ento verti	cal de cor C, na c	oluna		
C	X	entre as linhas	Y1 e Y2,	ambas incluidas			
H X1 X	(2 Y de	esenha um segm	ento hori:	zontal de cor C,	na li-		
C	nl	ha Y entre as co	lunas X1	e X2, ambas incl	luidas		
K X1 Y	1 X2 de	esenha um retâ	ngulo che	io na cor C. O	canto		
Y2 C	su	iperior esquerdo	é X1 Y1	e o inferior esque	erdo é		
		2 Y2.					
FXY	C P	reenche a área F	com a co	or C. A área R é	assim		
	de	efinida:					
	(a)	O pixel (X,Y)	pertence	à R			
				da cor de R e coi			
	ti	lhe um lado con	num com	alguém de R tai	mbém		
		ertence a R					
S < non			lo arquivo	, seguido do con	teúdo		
	at	ual da imagem					
X	fir	naliza a sessão.					

Saída Para cada comando S escrever na saída o nome e o conteúdo da área. Se for executado um comando diferente de I, C, L, V, H, K, F, S ou X ignorar toda a linha e passar ao próximo comando.

Exemplos

entrada	saída
I 5 6	one.bmp
L 2 3 A	00000
S one.bmp	00000
G 2 3 J	OA000
F 3 3 J	00000
V 2 3 4 W	00000
H 3 4 2 Z	00000
S two.bmp	two.bmp
X	JJJJJ
	JJZZJ
	JWJJJ
	JWJJJ
	JJJJJ
	JJJJJ

Para você fazer

3n+1

842 527 724 916 814 975

Viagens

6 19.59 19.42 17.69 22.19 15.84 21.86 5 13.55 11.50 21.52 16.21 19.79 5 24.39 22.13 26.52 21.53 22.91

Editor

Ι	9	7				Ι	8	8				Ι	9	8			
L	1	9	0			L	6	3	V			L	2	9	R		
F	5	9	0			F	1	5	0			L	7	7	М		
K	2	2	5	4	R	K	2	1	4	2	R	L	5	5	M		
V	2	5	6	0		K	2	3	5	6	V	Н	2	8	3	P	
L	1	5	L			K	1	2	4	5	Α	L	6	7	L		
Н	2	3	5	М		V	5	3	5	0		K	2	3	5	6	M
V	4	4	9	Α		Н	5	8	8	٧		F	4	1	Α		
L	2	6	0			L	7	5	М			F	3	5	0		
S	a]	Lfa	L			S	a]	Lfa	ı			S	a]	Lfa	ı		

$ 3n + 1_1 $	1 3n + 12	$3n + 1_3$	$viag_1$	$viag_2$	$viag_3$
11	1				50
H					
H					

$editor_1$	$editor_2$	$editor_3$
alfa[2][2]	alfa[2][2]	alfa[2][2]
alfa[3][3]	alfa[3][3]	alfa[3][3]
alfa[4][4]	alfa[4][4]	alfa[4][4]
alfa[5][5]	alfa[5][5]	alfa[5][5]

